Remodeling Functional Connectivity in Multiple Sclerosis: A Challenging Therapeutic Approach

Mario Stampanoni Bassi, Luana Gilio, Fabio Buttari, Pierpaolo Maffei, Girolama A Marfia, Domenico A Restivo, Diego Centonze, Ennio Iezzi, Mario Stampanoni Bassi, Luana Gilio, Fabio Buttari, Pierpaolo Maffei, Girolama A Marfia, Domenico A Restivo, Diego Centonze, Ennio Iezzi

Abstract

Neurons in the central nervous system are organized in functional units interconnected to form complex networks. Acute and chronic brain damage disrupts brain connectivity producing neurological signs and/or symptoms. In several neurological diseases, particularly in Multiple Sclerosis (MS), structural imaging studies cannot always demonstrate a clear association between lesion site and clinical disability, originating the "clinico-radiological paradox." The discrepancy between structural damage and disability can be explained by a complex network perspective. Both brain networks architecture and synaptic plasticity may play important roles in modulating brain networks efficiency after brain damage. In particular, long-term potentiation (LTP) may occur in surviving neurons to compensate network disconnection. In MS, inflammatory cytokines dramatically interfere with synaptic transmission and plasticity. Importantly, in addition to acute and chronic structural damage, inflammation could contribute to reduce brain networks efficiency in MS leading to worse clinical recovery after a relapse and worse disease progression. These evidence suggest that removing inflammation should represent the main therapeutic target in MS; moreover, as synaptic plasticity is particularly altered by inflammation, specific strategies aimed at promoting LTP mechanisms could be effective for enhancing clinical recovery. Modulation of plasticity with different non-invasive brain stimulation (NIBS) techniques has been used to promote recovery of MS symptoms. Better knowledge of features inducing brain disconnection in MS is crucial to design specific strategies to promote recovery and use NIBS with an increasingly tailored approach.

Keywords: brain networks; functional connectivity; inflammation; multiple sclerosis; non-invasive brain stimulation; synaptic plasticity.

Figures

Figure 1
Figure 1
Results of the main studies investigating interhemispheric connections in MS. Red coils and arrows represent CS, black coils and arrows depict TS. AMT, active motor threshold; CC, corpus callosum; CMCT, central motor conduction time; CS, conditioning stimulus; EDSS, expanded disability status scale; fMRI, functional magnetic resonance imaging; HC, healthy controls; IHI, interhemispheric inhibition; iM1, ipsilateral primary motor cortex; ISI, interstimulus interval; iSP, ipsilateral silent period; M1, primary motor cortex; PMd, dorsal premotor cortex; PP-MS, primary progressive multiple sclerosis; RMT, resting motor threshold; RR-MS, relapsing-remitting multiple sclerosis; SDMT, symbol digit modality test; T1-LL, T1 lesion load; TS, test stimulus.

References

    1. Achard S., Bullmore E. (2007). Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 3:e17. 10.1371/journal.pcbi.0030017
    1. Achard S., Salvador R., Whitcher B., Suckling J., Bullmore E. D. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72. 10.1523/JNEUROSCI.3874-05.2006
    1. d'Ambrosio A., Hidalgo de la Cruz M., Valsasina P., Pagani E., Colombo B., Rodegher M., et al. . (2017). Structural connectivity-defined thalamic subregions have different functional connectivity abnormalities in multiple sclerosis patients: implications for clinical correlations. Hum. Brain Mapp. 38, 6005–6018. 10.1002/hbm.23805
    1. Alstott J., Breakspear M., Hagmann P., Cammoun L., Sporns O. (2009). Modeling the impact of lesions in the human brain. PLoS Comput. Biol. 5:e1000408. 10.1371/journal.pcbi.1000408
    1. Ayache S. S., Chalah M. A. (2017). Fatigue in multiple sclerosis–Insights into evaluation and management. Neurophysiol. Clin. 47, 139–171. 10.1016/j.neucli.2017.02.004
    1. Ayache S. S., Palm U., Chalah M. A., Al-Ani T., Brignol A., Abdellaoui M., et al. . (2016). Prefrontal tDCS decreases pain in patients with multiple sclerosis. Front. Neurosci. 10:147. 10.3389/fnins.2016.00147
    1. Baltruschat S. A., Ventura-Campos N., Cruz-Gómez Á. J., Belenguer A., Forn C. (2015). Gray matter atrophy is associated with functional connectivity reorganization during the Paced Auditory Serial Addition Test (PASAT) execution in Multiple Sclerosis (MS). J. Neuroradiol. 42, 141–149. 10.1016/j.neurad.2015.02.006
    1. Barkhof F. (2002). The clinico-radiological paradox in multiple sclerosis revisited. Curr. Opin. Neurol. 15, 239–245. 10.1097/00019052-200206000-00003
    1. Biswal B., Yetkin F. Z., Haughton V. M., Hyde J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541. 10.1002/mrm.1910340409
    1. Bliss T. V., Gardner-Medwin A. R. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path, J. Physiol. 232, 357–374. 10.1113/jphysiol.1973.sp010274
    1. Bonavita S., Gallo A., Sacco R., Corte M. D., Bisecco A., Docimo R., et al. . (2011). Distributed changes in default-mode resting-state connectivity in multiple sclerosis. Mult. Scler. 17, 411–422. 10.1177/1352458510394609
    1. Boroojerdi B., Hungs M., Mull M., Töpper R., Noth J. (1998). Interhemispheric inhibition in patients with multiple sclerosis. Electroencephalogr. Clin. Neurophysiol. 109, 230–237. 10.1016/S0924-980X(98)00013-7
    1. Boutière C., Rey C., Zaaraoui W., Le Troter A., Rico A., Crespy L., et al. . (2017). Improvement of spasticity following intermittent theta burst stimulation in multiple sclerosis is associated with modulation of resting-state functional connectivity of the primary motor cortices. Mult. Scler. 23, 855–863. 10.1177/1352458516661640
    1. Bullmore E. T., Bassett D. S. (2011). Brain graphs: graphical models of the human brain connectome. Annu. Rev. Clin. Psychol. 7, 113–140. 10.1146/annurev-clinpsy-040510-143934
    1. Burhan A. M., Subramanian P., Pallaveshi L., Barnes B., Montero-Odasso M. (2015). Modulation of the left prefrontal cortex with high frequency repetitive transcranial magnetic stimulation facilitates gait in multiple sclerosis. Case Rep. Neurol. Med. 2015:251829. 10.1155/2015/251829
    1. Capuron L., Pagnoni G., Demetrashvili M., Woolwine B. J., Nemeroff C. B., Berns G. S., et al. . (2005). Anterior cingulate activation and error processing during interferon-alpha treatment. Biol. Psychiatry 58, 190–196. 10.1016/j.biopsych.2005.03.033
    1. Caramia M. D., Palmieri M. G., Desiato M. T., Boffa L., Galizia P., Rossini P. M., et al. . (2004). Brain excitability changes in the relapsing and remitting phases of multiple sclerosis: a study with transcranial magnetic stimulation. Clin. Neurophysiol. 115, 956–965. 10.1016/j.clinph.2003.11.024
    1. Carrera E., Tononi G. (2014). Diaschisis: past, present, future. Brain 137, 2408–2422. 10.1093/brain/awu101
    1. Centonze D., Koch G., Versace V., Mori F., Rossi S., Brusa L., et al. . (2007a). Repetitive transcranial magnetic stimulation of the motor cortex ameliorates spasticity in multiple sclerosis. Neurology 68, 1045–1050. 10.1212/01.wnl.0000257818.16952.62
    1. Centonze D., Petta F., Versace V., Rossi S., Torelli F., Prosperetti C., et al. . (2007b). Effects of motor cortex rTMS on lower urinary tract dysfunction in multiple sclerosis. Mult. Scler. 13, 269–271. 10.1177/1352458506070729
    1. Centonze D., Rossi S., Tortiglione A., Picconi B., Prosperetti C., De Chiara V., et al. . (2007c). Synaptic plasticity during recovery from permanent occlusion of the middle cerebral artery. Neurobiol. Dis. 27, 44–53. 10.1016/j.nbd.2007.03.012
    1. Chalah M. A., Riachi N., Ahdab R., Créange A., Lefaucheur J. P., Ayache S. S. (2015). Fatigue in multiple sclerosis: neural correlates and the role of non-invasive brain stimulation. Front. Cell. Neurosci. 9:460. 10.3389/fncel.2015.00460
    1. Chalah M. A., Riachi N., Ahdab R., Mhalla A., Abdellaoui M., Créange A., et al. (2017). Effects of left DLPFC vs. right PPC tDCS on multiple sclerosis fatigue. J. Neurol. Sci. 372, 131–137. 10.1016/j.jns.2016.11.015
    1. Cocchi L., Sale M. V., Gollo L. L., Bell P. T., Nguyen V. T., Zalesky A., et al. . (2016). A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields. Elife 5:e15252. 10.7554/eLife.15252
    1. Codecà C., Mori F., Kusayanagi H., Monteleone F., Boffa L., Paolillo A., et al. . (2010). Differential patterns of interhemispheric functional disconnection in mild and advanced multiple sclerosis. Mult. Scler. 16, 1308–1316. 10.1177/1352458510376957
    1. Cruz-Gómez Á. J., Ventura-Campos N., Belenguer A., Ávila C., Forn C. (2014). The link between resting-state functional connectivity and cognition in MS patients. Mult. Scler. 20, 338–348. 10.1177/1352458513495584
    1. Cuypers K., Leenus D. J., Van Wijmeersch B., Thijs H., Levin O., Swinnen S. P., et al. . (2013). Anodal tDCS increases corticospinal output and projection strength in multiple sclerosis. Neurosci. Lett. 554, 151–155. 10.1016/j.neulet.2013.09.004
    1. Di Filippo M., Chiasserini D., Gardoni F., Viviani B., Tozzi A., Giampà C., et al. . (2013). Effects of central and peripheral inflammation on hippocampal synaptic plasticity. Neurobiol. Dis. 52, 229–236. 10.1016/j.nbd.2012.12.009
    1. Di Filippo M., de Iure A., Giampà C., Chiasserini D., Tozzi A., Orvietani P. L., et al. (2016). Persistent activation of microglia and NADPH oxidase drive hippocampal dysfunction in experimental multiple sclerosis. Sci. Rep. 18:20926 10.1038/srep20926
    1. Di Lazzaro V., Profice P., Pilato F., Capone F., Ranieri F., Pasqualetti P., et al. . (2010a). Motor cortex plasticity predicts recovery in acute stroke. Cereb. Cortex 20, 1523–1528. 10.1093/cercor/bhp216
    1. Di Lazzaro V., Profice P., Pilato F., Dileone M., Oliviero A., Ziemann U. (2010b). The effects of motor cortex rTMS on corticospinal descending activity. Clin. Neurophysiol. 121, 464–473. 10.1016/j.clinph.2009.11.007
    1. Dipasquale O., Cooper E. A., Tibble J., Voon V., Baglio F., Baselli G., et al. . (2016). Interferon-α acutely impairs whole-brain functional connectivity network architecture–A preliminary study. Brain Behav. Immun. 58, 31–39. 10.1016/j.bbi.2015.12.011
    1. Eldaief M. C., Halko M. A., Buckner R. L., Pascual-Leone A. (2011). Transcranial magnetic stimulation modulates the brain's intrinsic activity in a frequency-dependent manner. Proc. Natl. Acad. Sci. U.S.A. 108, 21229–21234. 10.1073/pnas.1113103109
    1. Elzamarany E., Afifi L., El-Fayoumy N. M., Salah H., Nada M. (2016). Motor cortex rTMS improves dexterity in relapsing-remitting and secondary progressive multiple sclerosis. Acta Neurol. Belg. 116, 145–150. 10.1007/s13760-015-0540-y
    1. Faivre A., Rico A., Zaaraoui W., Crespy L., Reuter F., Wybrecht D., et al. . (2012). Assessing brain connectivity at rest is clinically relevant in early multiple sclerosis. Mult. Scler. 18, 1251–1258. 10.1177/1352458511435930
    1. Feeney D. M., Baron J. C. (1986). Diaschisis. Stroke 17, 817–830. 10.1161/01.STR.17.5.817
    1. Ferbert A., Priori A., Rothwell J. C., Day B. L., Colebatch J. G., Marsden C. D. (1992). Interhemispheric inhibition of the human motor cortex. J. Physiol. 453, 525–546. 10.1113/jphysiol.1992.sp019243
    1. Ferrucci R., Vergari M., Cogiamanian F., Bocci T., Ciocca M., Tomasini E., et al. . (2014). Transcranial direct current stimulation (tDCS) for fatigue in multiple sclerosis. Neuro Rehabil. 34, 121–127. 10.3233/NRE-131019
    1. Filippi M., Rocca M. A. (2013). Present and future of fMRI in multiple sclerosis. Expert Rev. Neurother. 13, 27–31. 10.1586/14737175.2013.865871
    1. Floel A., Cohen L. G. (2006). Translational studies in neurorehabilitation: from bench to bedside. Cogn. Behav. Neurol. 19, 1–10. 10.1097/00146965-200603000-00001
    1. Fox M. D., Raichle M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711. 10.1038/nrn2201
    1. Friston K. J., Frith C. D., Frackowiak R. S. J. (1993). Time-dependent changes in effective connectivity measured with PET. Hum. Brain Mapp. 1, 69–79. 10.1002/hbm.460010108
    1. Gerstein G. L., Aertsen A. M. (1985). Representation of cooperative firing activity among simultaneously recorded neurons. J. Neurophysiol. 54, 1513–1528.
    1. Gollo L. L., Roberts J. A., Cocchi L. (2017). Mapping how local perturbations influence systems-level brain dynamics. Neuroimage 160, 97–112. 10.1016/j.neuroimage.2017.01.057
    1. Grefkes C., Fink G. R. (2011). Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain 134, 1264–1276. 10.1093/brain/awr033
    1. Grefkes C., Nowak D. A., Wang L. E., Dafotakis M., Eickhoff S. B., Fink G. R. (2010). Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. Neuroimage 50, 233–242. 10.1016/j.neuroimage.2009.12.029
    1. Hannestad J., Gallezot J. D., Schafbauer T., Lim K., Kloczynski T., Morris E. D., et al. (2012). Endotoxin-induced systemic inflammation activates microglia:[11C] PBR28 positron emission tomography in nonhuman primates. Neuroimage 63, 232–239. 10.1016/j.neuroimage.2012.06.055
    1. Harrison N. A., Brydon L., Walker C., Gray M. A., Steptoe A., Dolan R. J., et al. . (2009). Neural origins of human sickness in interoceptive responses to inflammation. Biol. Psychiatry 66, 415–422. 10.1016/j.biopsych.2009.03.007
    1. Hermundstad A. M., Bassett D. S., Brown K. S., Aminoff E. M., Clewett D., Freeman S., et al. . (2013). Structural foundations of resting-state and task-based functional connectivity in the human brain. Proc. Natl. Acad. Sci. U.S.A. 110, 6169–6174. 10.1073/pnas.1219562110
    1. Honey C. J., Kötter R., Breakspear M., Sporns O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. U.S.A. 104, 10240–10245. 10.1073/pnas.0701519104
    1. Honey C. J., Sporns O. (2008). Dynamical consequences of lesions in cortical networks. Hum. Brain Mapp. 29, 802–809. 10.1002/hbm.20579
    1. Honey C. J., Sporns O., Cammoun L., Gigandet X., Thiran J. P., Meuli R., et al. . (2009). Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. U.S.A. 106, 2035–2040. 10.1073/pnas.0811168106
    1. Honey C. J., Thivierge J. P., Sporns O. (2010). Can structure predict function in the human brain? Neuroimage 52, 766–776. 10.1016/j.neuroimage.2010.01.071
    1. Huang Y. Z., Edwards M. J., Rounis E., Bhatia K. P., Rothwell J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron 45, 201–206. 10.1016/j.neuron.2004.12.033
    1. Hulst H. E., Goldschmidt T., Nitsche M. A., de Wit S. J., van den Heuvel O. A., Barkhof F., et al. . (2016). rTMS affects working memory performance, brain activation and functional connectivity in patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatr. 88, 386–394. 10.1136/jnnp-2016-314224
    1. Hummel F., Celnik P., Giraux P., Floel A., Wu W. H., Gerloff C., et al. . (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128, 490–499. 10.1093/brain/awh369
    1. Iodice R., Dubbioso R., Ruggiero L., Santoro L., Manganelli F. (2015). Anodal transcranial direct current stimulation of motor cortex does not ameliorate spasticity in multiple sclerosis. Restor. Neurol. Neurosci. 33, 487–492. 10.3233/RNN-150495
    1. Joyce K. E., Hayasaka S., Laurienti P. J. (2013). The human functional brain network demonstrates structural and dynamical resilience to targeted attack. PLoS Comput. Biol. 9:e1002885. 10.1371/journal.pcbi.1002885
    1. Jung P., Beyerle A., Humpich M., Neumann-Haefelin T., Lanfermann H., Ziemann U. (2006). Ipsilateral silent period: a marker of callosal conduction abnormality in early relapsing–remitting multiple sclerosis? J. Neurol. Sci. 250, 133–139. 10.1016/j.jns.2006.08.008
    1. Kaiser M. (2013). The potential of the human connectome as a biomarker of brain disease. Front. Hum. Neurosci. 7:484. 10.3389/fnhum.2013.00484
    1. Koch G., Rossi S., Prosperetti C., Codecà C., Monteleone F., Petrosini L., et al. . (2008). Improvement of hand dexterity following motor cortex rTMS in multiple sclerosis patients with cerebellar impairment. Mult. Scler. 14, 995–998. 10.1177/1352458508088710
    1. Kos D., Kerckhofs E., Ketelaer P., Duportail M., Nagels G., D'Hooghe M., et al. . (2004). Self-report assessment of fatigue in multiple sclerosis: a critical evaluation. Occup. Ther. Health Care 17, 45–62. 10.1080/J003v17n03_04
    1. Krupp L. B., Pollina D. A. (1996). Mechanisms and management of fatigue in progressive neurological disorders. Curr. Opin. Neurol. 9, 456–460. 10.1097/00019052-199612000-00011
    1. Kukaswadia S., Wagle-Shukla A., Morgante F., Gunraj C., Chen R. (2005). Interactions between long latency afferent inhibition and interhemispheric inhibitions in the human motor cortex. J. Physiol. 563, 915–924. 10.1113/jphysiol.2004.080010
    1. Labrenz F., Wrede K., Forsting M., Engler H., Schedlowski M., Elsenbruch S., et al. . (2016). Alterations in functional connectivity of resting state networks during experimental endotoxemia–an exploratory study in healthy men. Brain Behav. Immun. 54, 17–26. 10.1016/j.bbi.2015.11.010
    1. Lefaucheur J. P., Chalah M. A., Mhalla A., Palm U., Ayache S. S., Mylius V. (2017). The treatment of fatigue by non-invasive brain stimulation. Neurophysiol. Clin. 47, 173–184. 10.1016/j.neucli.2017.03.003
    1. Lenzi D., Conte A., Mainero C., Frasca V., Fubelli F., Totaro P., et al. . (2007). Effect of corpus callosum damage on ipsilateral motor activation in patients with multiple sclerosis: a functional and anatomical study. Hum. Brain Mapp. 28, 636–644. 10.1002/hbm.20305
    1. Lerdal A., Celius E. G., Krupp L., Dahl A. A. (2007). A prospective study of patterns of fatigue in multiple sclerosis. Eur. J. Neurol. 14, 1338–1343. 10.1111/j.1468-1331.2007.01974.x
    1. Liebetanz D., Nitsche M. A., Tergau F., Paulus W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125, 2238–2247. 10.1093/brain/awf238
    1. Liu Y., Dai Z., Duan Y., Huang J., Ren Z., Liu Z., et al. . (2016). Whole brain functional connectivity in clinically isolated syndrome without conventional brain MRI lesions. Eur. Radiol. 26, 2982–2991. 10.1007/s00330-015-4147-8
    1. Liu Y., Liang P., Duan Y., Huang J., Ren Z., Jia X., et al. . (2015). Altered thalamic functional connectivity in multiple sclerosis. Eur. J. Radiol. 84, 703–708. 10.1016/j.ejrad.2015.01.001
    1. Liu Y., Wang H., Duan Y., Huang J., Ren Z., Ye J., et al. . (2017). Functional brain network alterations in clinically isolated syndrome and multiple sclerosis: a graph-based connectome study. Radiology 282, 534–541. 10.1148/radiol.2016152843
    1. Llufriu S., Blanco Y., Martinez-Heras E., Casanova-Molla J., Gabilondo I., Sepulveda M., et al. . (2012). Influence of corpus callosum damage on cognition and physical disability in multiple sclerosis: a multimodal study. PLoS ONE 7:e37167. 10.1371/journal.pone.0037167
    1. Louapre C., Perlbarg V., García-Lorenzo D., Urbanski M., Benali H., Assouad R., et al. . (2014). Brain networks disconnection in early multiple sclerosis cognitive deficits: an anatomofunctional study. Hum. Brain Mapp. 35, 4706–4717. 10.1002/hbm.22505
    1. Mandolesi G., Musella A., Gentile A., Grasselli G., Haji N., Sepman H., et al. . (2013). Interleukin-1β alters glutamate transmission at purkinje cell synapses in a mouse model of multiple sclerosis. J. Neurosci. 33, 12105–12121. 10.1523/JNEUROSCI.5369-12.2013
    1. Marsland A. L., Kuan D. C. H., Sheu L. K., Krajina K., Kraynak T. E., Manuck S. B., et al. . (2017). Systemic inflammation and resting state connectivity of the default mode network. Brain Behav. Immun. 62, 162–170. 10.1016/j.bbi.2017.01.013
    1. Mattioli F., Bellomi F., Stampatori C., Capra R., Miniussi C. (2016). Neuroenhancement through cognitive training and anodal tDCS in multiple sclerosis. Mult. Scler. 22, 222–2230. 10.1177/1352458515587597
    1. Meesen R. L., Thijs H., Leenus D. J., Cuypers K. (2014). A single session of 1 mA anodal tDCS-supported motor training does not improve motor performance in patients with multiple sclerosis. Restor. Neurol. Neurosci. 32, 293–300. 10.3233/RNN-130348
    1. Miniussi C., Cappa S. F., Cohen L. G., Floel A., Fregni F., Nitsche M. A., et al. . (2008). Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul. 1, 326–336. 10.1016/j.brs.2008.07.002
    1. Mori F., Codecà C., Kusayanagi H., Monteleone F., Boffa L., Rimano A., et al. . (2010a). Effects of intermittent theta burst stimulation on spasticity in patients with multiple sclerosis. Eur. J. Neurol. 17, 295–300. 10.1111/j.1468-1331.2009.02806.x
    1. Mori F., Codecà C., Kusayanagi H., Monteleone F., Buttari F., Fiore S., et al. . (2010b). Effects of anodal transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis. J. Pain. 11, 436–442. 10.1016/j.jpain.2009.08.011
    1. Mori F., Kusayanagi H., Buttari F., Centini B., Monteleone F., Nicoletti C. G., et al. (2012). Early treatment with high-dose interferon beta-1a reverses cognitive and cortical plasticity deficits in multiple sclerosis. Funct. Neurol. 27, 163–168.
    1. Mori F., Kusayanagi H., Nicoletti C. G., Weiss S., Marciani M. G., Centonze D. (2014). Cortical plasticity predicts recovery from relapse in multiple sclerosis. Mult. Scler. 20, 451–457. 10.1177/1352458513512541
    1. Mori F., Nicoletti C. G., Kusayanagi H., Foti C., Restivo D. A., Marciani M. G., et al. . (2013). Transcranial direct current stimulation ameliorates tactile sensory deficit in multiple sclerosis. Brain Stimul. 6, 654–659. 10.1016/j.brs.2012.10.003
    1. Mori F., Rossi S., Sancesario G., Codecà C., Mataluni G., Monteleone F., et al. . (2011). Cognitive and cortical plasticity deficits correlate with altered amyloid-β CSF levels in multiple sclerosis. Neuropsychopharmacology 36, 559–568. 10.1038/npp.2010.187
    1. Morreale M., Marchione P., Pili A., Lauta A., Castiglia S. F., Spallone A., et al. (2016). Early vs. delayed rehabilitation treatment in hemiplegic patients with ischemic stroke: proprioceptive or cognitive approach? Eur. J. Phys. Rehabil. Med. 52, 81–89.
    1. Muellbacher W., Ziemann U., Boroojerdi B., Cohen L., Hallett M. (2001). Role of the human motor cortex in rapid motor learning. Exp. Brain Res. 136, 431–438. 10.1007/s002210000614
    1. Murase N., Duque J., Mazzocchio R., Cohen L. G. (2004). Influence of interhemispheric interactions on motor function in chronic stroke. Ann. Neurol. 55, 400–409. 10.1002/ana.10848
    1. Neva J. L., Lakhani B., Brown K. E., Wadden K. P., Mang C. S., Ledwell N. H. M., et al. . (2016). Multiple measures of corticospinal excitability are associated with clinical features of multiple sclerosis. Behav. Brain Res. 297, 187–195. 10.1016/j.bbr.2015.10.015
    1. Ni Z., Gunraj C., Nelson A. J., Yeh I. J., Castillo G., Hoque T., et al. . (2009). Two phases of interhemispheric inhibition between motor related cortical areas and the primary motor cortex in human. Cereb. Cortex 19, 1654–1665. 10.1093/cercor/bhn201
    1. Nisticò R., Mango D., Mandolesi G., Piccinin S., Berretta N., Pignatelli M., et al. . (2013). Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis. PLoS ONE 8:e54666. 10.1371/journal.pone.0054666
    1. Nitsche M. A., Fricke K., Henschke U., Schlitterlau A., Liebetanz D., Lang N., et al. . (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. 553, 293–301. 10.1113/jphysiol.2003.049916
    1. Nitsche M. A., Paulus W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527, 633–639. 10.1111/j.1469-7793.2000.t01-1-00633.x
    1. Pantano P., Mainero C., Caramia F. (2006). Functional brain reorganization in multiple sclerosis: evidence from fMRI studies. J. Neuroimaging 16, 104–114. 10.1111/j.1552-6569.2006.00029.x
    1. Ponten S. C., Daffertshofer A., Hillebrand A., Stam C. J. (2010). The relationship between structural and functional connectivity: graph theoretical analysis of an EEG neural mass model. Neuroimage 52, 985–994. 10.1016/j.neuroimage.2009.10.049
    1. Radhu N., Ravindran L. N., Levinson A. J., Daskalakis Z. J. (2012). Inhibition of the cortex using transcranial magnetic stimulation in psychiatric populations: current and future directions. J. Psychiatry Neurosci. 37, 369–378. 10.1503/jpn.120003
    1. Rioult-Pedotti M. S., Friedman D., Donoghue J. P. (2000). Learning-induced LTP in neocortex. Science 290, 533–536. 10.1126/science.290.5491.533
    1. Rocca M. A., Colombo B., Falini A., Ghezzi A., Martinelli V., Scotti G., et al. . (2005). Cortical adaptation in patients with MS: a cross-sectional functional MRI study of disease phenotypes. Lancet Neurol. 4, 618–626. 10.1016/S1474-4422(05)70171-X
    1. Rocca M. A., Falini A., Colombo B., Scotti G., Comi G., Filippi M. (2002). Adaptive functional changes in the cerebral cortex of patients with non-disabling multiple sclerosis correlate with the extent of brain structural damage. Ann. Neurol. 51, 330–339. 10.1002/ana.10120
    1. Rocca M. A., Pravatà E., Valsasina P., Radaelli M., Colombo B., Vacchi L., et al. . (2015). Hippocampal-DMN disconnectivity in MS is related to WM lesions and depression. Hum. Brain Mapp. 36, 5051–5063. 10.1002/hbm.22992
    1. Rocca M. A., Valsasina P., Absinta M., Riccitelli G., Rodegher M. E., Misci P., et al. . (2010). Default-mode network dysfunction and cognitive impairment in progressive MS. Neurology 74, 1252–1259. 10.1212/WNL.0b013e3181d9ed91
    1. Rocca M. A., Valsasina P., Martinelli V., Misci P., Falini A., Comi G., et al. . (2012). Large-scale neuronal network dysfunction in relapsing-remitting multiple sclerosis. Neurology 79, 1449–1457. 10.1212/WNL.0b013e31826d5f10
    1. Rocca M. A., Valsasina P., Meani A., Falini A., Comi G., Filippi M. (2016). Impaired functional integration in multiple sclerosis: a graph theory study. Brain Struct. Funct. 221, 115–131. 10.1007/s00429-014-0896-4
    1. Roosendaal S. D., Schoonheim M. M., Hulst H. E., Sanz-Arigita E. J., Smith S. M., Geurts J. J., et al. . (2010). Resting state networks change in clinically isolated syndrome. Brain 133, 1612–1621. 10.1093/brain/awq058
    1. Rossi S., Furlan R., De Chiara V., Motta C., Studer V., Mori F., et al. . (2012a). Interleukin-1β causes synaptic hyperexcitability in multiple sclerosis. Ann. Neurol. 71, 76–83. 10.1002/ana.22512
    1. Rossi S., Muzio L., De Chiara V., Grasselli G., Musella A., Musumeci G., et al. . (2011). Impaired striatal GABA transmission in experimental autoimmune encephalomyelitis. Brain Behav. Immun. 25, 947–956. 10.1016/j.bbi.2010.10.004
    1. Rossi S., Studer V., Motta C., De Chiara V., Barbieri F., Bernanrdi G., et al. . (2012b). Inflammation inhibits GABA transmission in multiple sclerosis. Mult. Scler. 18, 1633–1635. 10.1177/1352458512440207
    1. Rossini P. M., Burke D., Chen R., Cohen L. G., Daskalakis Z., Di Iorio R., et al. (2015). Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin. Neurophysiol. 126, 1071–1107. 10.1016/j.clinph.2015.02.001
    1. Rubinov M., Sporns O., van Leeuwen C., Breakspear M. (2009). Symbiotic relationship between brain structure and dynamics. BMC Neurosci. 10:55. 10.1186/1471-2202-10-55
    1. Saiote C., Goldschmidt T., Timäus C., Steenwijk M. D., Opitz A., Antal A., et al. . (2014). Impact of transcranial direct current stimulation on fatigue in multiple sclerosis. Restor. Neurol. Neurosci. 32, 423–436. 10.3233/RNN-130372
    1. Sale M. V., Mattingley J. B., Zalesky A., Cocchi L. (2015). Imaging human brain networks to improve the clinical efficacy of non-invasive brain stimulation. Neurosci. Biobehav. Rev. 57, 187–198. 10.1016/j.neubiorev.2015.09.010
    1. Sbardella E., Tona F., Petsas N., Upadhyay N., Piattella M. C., Filippini N., et al. . (2015). Functional connectivity changes and their relationship with clinical disability and white matter integrity in patients with relapsing–remitting multiple sclerosis. Mult. Scler. 21, 1681–1692. 10.1177/1352458514568826
    1. Schmierer K., Irlbacher K., Grosse P., Röricht S., Meyer B. U. (2002). Correlates of disability in multiple sclerosis detected by transcranial magnetic stimulation. Neurology 59, 1218–1224. 10.1212/WNL.59.8.1218
    1. Schmierer K., Niehaus L., Röricht S., Meyer B. U. (2000). Conduction deficits of callosal fibres in early multiple sclerosis. J. Neurol. Neurosurg. Psychiatr. 68, 633–638. 10.1136/jnnp.68.5.633
    1. Schoonheim M. M., Meijer K. A., Geurts J. J. (2015). Network collapse and cognitive impairment in multiple sclerosis. Front. Neurol. 6:82. 10.3389/fneur.2015.00082
    1. Schwarz C., Thier P. (1999). Binding of signals relevant for action: towards a hypothesis of the functional role of the pontine nuclei. Trends Neurosci. 22, 443–451. 10.1016/S0166-2236(99)01446-0
    1. Shafi M. M., Westover M. B., Fox M. D., Pascual-Leone A. (2012). Exploration and modulation of brain network interactions with noninvasive brain stimulation in combination with neuroimaging. Eur. J. Neurosci. 35, 805–825. 10.1111/j.1460-9568.2012.08035.x
    1. Siebner H. R., Hartwigsen G., Kassuba T., Rothwell J. C. (2009). How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition Cortex 45, 1035–1042. 10.1016/j.cortex.2009.02.007
    1. Siebner H., Rothwell J. (2003). Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp. Brain Res. 148, 1–16. 10.1007/s00221-002-1234-2
    1. Sporns O., Tononi G., Kötter R. (2005). The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1:e42. 10.1371/journal.pcbi.0010042
    1. Stampanoni Bassi M., Leocani L., Comi G., Iezzi E., Centonze D. (2017a). Can pharmacological manipulation of LTP favor the effects of motor rehabilitation in multiple sclerosis? Mult. Scler. [Epub ahead of print]. 10.1177/1352458517721358
    1. Stampanoni Bassi M., Mori F., Buttari F., Marfia G. A., Sancesario A., Centonze D., et al. . (2017b). Neurophysiology of synaptic functioning in multiple sclerosis. Clin. Neurophysiol. 128, 1148–1157 10.1016/j.clinph.2017.04.006
    1. Tecchio F., Cancelli A., Cottone C., Zito G., Pasqualetti P., Ghazaryan A., et al. . (2014). Multiple sclerosis fatigue relief by bilateral somatosensory cortex neuromodulation. J. Neurol. 261, 1552–1558. 10.1007/s00415-014-7377-9
    1. Tona F., Petsas N., Sbardella E., Prosperini L., Carmellini M., Pozzilli C., et al. . (2014). Multiple sclerosis: altered thalamic resting-state functional connectivity and its effect on cognitive function. Radiology 271, 814–821. 10.1148/radiol.14131688
    1. Tongiorgi E., Sartori A., Baj G., Bratina A., Di Cola F., Zorzon M., et al. . (2012). Altered serum content of brain-derived neurotrophic factor isoforms in multiple sclerosis. J. Neurol. Sci. 320, 161–165. 10.1016/j.jns.2012.07.016
    1. Uehara K., Morishita T., Kubota S., Funase K. (2013). Neural mechanisms underlying the changes in ipsilateral primary motor cortex excitability during unilateral rhythmic muscle contraction. Behav. Brain Res. 240, 33–45. 10.1016/j.bbr.2012.10.053
    1. van Dellen E., Hillebrand A., Douw L., Heimans J. J., Reijneveld J. C., Stam C. J. (2013). Local polymorphic delta activity in cortical lesions causes global decreases in functional connectivity. Neuroimage 83, 524–532. 10.1016/j.neuroimage.2013.06.009
    1. van den Heuvel M. P., Hulshoff Pol H. E. (2010). Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20, 519–534. 10.1016/j.euroneuro.2010.03.008
    1. von Monakow C. (1914). Die Localization im Grosshirn und der Abbau der Funktion Durch Korticale Herde. Wiesbaden: JF Bergmann.
    1. Wahl M., Hübers A., Lauterbach-Soon B., Hattingen E., Jung P., Cohen L. G., et al. . (2011). Motor callosal disconnection in early relapsing-remitting multiple sclerosis. Hum. Brain Mapp. 32, 846–855. 10.1002/hbm.21071
    1. Wassermann E. M., Fuhr P., Cohen L. G., Hallett M. (1991). Effects of transcranial magnetic stimulation on ipsilateral muscles. Neurology 41, 1795–1799. 10.1212/WNL.41.11.1795
    1. Wu G. F., Matthew R., Parks C. A. L., Ances B. M., Van Stavern G. P. (2015). An eye on brain integrity: acute optic neuritis affects resting state functional connectivity impact of acute on on rs-fcMRI. Invest. Ophthalmol. Vis. Sci. 56, 2541–2546. 10.1167/iovs.14-16315
    1. Young R. R. (1994). Spasticity: a review. Neurology 44, 12–20.
    1. Zhou F., Zhuang Y., Gong H., Wang B., Wang X., Chen Q., et al. . (2014). Altered inter-subregion connectivity of the default mode network in relapsing remitting multiple sclerosis: a functional and structural connectivity study. PLoS ONE 9:e101198. 10.1371/journal.pone.0101198
    1. Ziemann U., Iliać T. V., Pauli C., Meintzschel F., Ruge D. (2004). Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. J. Neurosci. 24, 1666–1672. 10.1523/JNEUROSCI.5016-03.2004
    1. Ziemann U., Paulus W., Nitsche M. A., Pascual-Leone A., Byblow W. D., Berardelli A., et al. . (2008). Consensus: motor cortex plasticity protocols. Brain Stimul. 1, 164–182. 10.1016/j.brs.2008.06.006

Source: PubMed

3
Tilaa