Association of TNF-α (-308G/A) Gene Polymorphism with Circulating TNF-α Levels and Excessive Daytime Sleepiness in Adults with Coronary Artery Disease and Concomitant Obstructive Sleep Apnea

Afrouz Behboudi, Tilia Thelander, Duygu Yazici, Yeliz Celik, Tülay Yucel-Lindberg, Erik Thunström, Yüksel Peker, Afrouz Behboudi, Tilia Thelander, Duygu Yazici, Yeliz Celik, Tülay Yucel-Lindberg, Erik Thunström, Yüksel Peker

Abstract

Obstructive sleep apnea (OSA) is common in patients with coronary artery disease (CAD), in which inflammatory activity has a crucial role. The manifestation of OSA varies significantly between individuals in clinical cohorts; not all adults with OSA demonstrate the same set of symptoms; i.e., excessive daytime sleepiness (EDS) and/or increased levels of inflammatory biomarkers. The further exploration of the molecular basis of these differences is therefore essential for a better understanding of the OSA phenotypes in cardiac patients. In this current secondary analysis of the Randomized Intervention with Continuous Positive Airway Pressure in CAD and OSA (RICCADSA) trial (Trial Registry: ClinicalTrials.gov; No: NCT00519597), we aimed to address the association of tumor necrosis factor alpha (TNF-α)-308G/A gene polymorphism with circulating TNF-α levels and EDS among 326 participants. CAD patients with OSA (apnea-hypopnea-index (AHI) ≥ 15 events/h; n = 256) were categorized as having EDS (n = 100) or no-EDS (n = 156) based on the Epworth Sleepiness Scale score with a cut-off of 10. CAD patients with no-OSA (AHI < 5 events/h; n = 70) were included as a control group. The results demonstrated no significant differences regarding the distribution of the TNF-α alleles and genotypes between CAD patients with vs. without OSA. In a multivariate analysis, the oxygen desaturation index and TNF-α genotypes from GG to GA and GA to AA as well as the TNF-α-308A allele carriage were significantly associated with the circulating TNF-α levels. Moreover, the TNF-α-308A allele was associated with a decreased risk for EDS (odds ratio 0.64, 95% confidence interval 0.41-0.99; p = 0.043) independent of age, sex, obesity, OSA severity and the circulating TNF-α levels. We conclude that the TNF-α-308A allele appears to modulate circulatory TNF-α levels and mitigate EDS in adults with CAD and concomitant OSA.

Keywords: coronary artery disease; obstructive sleep apnea; tumor necrosis factor.

Conflict of interest statement

A.B., T.T., D.Y., Y.C., T.Y.-L. and E.T. report no conflict of interest. Y.P. received institutional grants from ResMed Foundation for the main RICCADSA trial.

Figures

Figure 1
Figure 1
Flow of patients through the study. Abbreviations: AHI, apnea–hypopnea index; CAD; coronary artery disease; CPAP, continuous positive airway pressure; CSA-CSR, central sleep apnea–Cheyne Stokes respiration; ESS, Epworth Sleepiness Scale; OSA, obstructive sleep apnea; RICCADSA, Randomized Intervention with CPAP in Coronary Artery Disease and Sleep Apnea.
Figure 2
Figure 2
(A) Genotype frequency of the TNF-α-308G/A promoter polymorphism and (B) allele frequency of the TNF-α-308G/A promoter polymorphism in the study cohort.
Figure 3
Figure 3
Variables associated with excessive daytime sleepiness in the study population in the multivariate logistic regression analysis. Abbreviations: TNF-α = tumor necrosis factor alpha; OSA = obstructive sleep apnea. * p < 0.05, ** p < 0.01, *** p < 0.001.

References

    1. Said M.A., van de Vegte Y., Zafar M.M., Van Der Ende M.Y., Raja G.K., Verweij N., Van Der Harst P. Contributions of Interactions Between Lifestyle and Genetics on Coronary Artery Disease Risk. Curr. Cardiol. Rep. 2019;21:89. doi: 10.1007/s11886-019-1177-x.
    1. Musunuru K., Kathiresan S. Genetics of Common, Complex Coronary Artery Disease. Cell. 2019;177:132–145. doi: 10.1016/j.cell.2019.02.015.
    1. Khera A.V., Kathiresan S. Genetics of coronary artery disease: Discovery, biology and clinical translation. Nat. Rev. Genet. 2017;18:331–344. doi: 10.1038/nrg.2016.160.
    1. Young T., Palta M., Dempsey J., Peppard P.E., Nieto F.J., Hla K.M. Burden of sleep apnea: Rationale, design, and major findings of the Wisconsin Sleep Cohort study. WMJ. 2009;108:246–249.
    1. Peker Y., Franklin K., Hedner J. Coronary Artery Disease and Sleep Apnea. In: Kryger M.H., Roth T.T., Dement W.T., editors. Principals and Practice of Sleep Medicine. Elsevier Inc.; Philadelphia, PA, USA: 2017. pp. 1264–1270.
    1. Turgut Çelen Y., Peker Y. Cardiovascular consequences of sleep apnea: II-Cardiovascular mechanisms. Anatol. J. Cardiol. 2010;10:168–175. doi: 10.5152/akd.2010.044.
    1. Hansson G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005;352:1685–1695. doi: 10.1056/NEJMra043430.
    1. Cesari M., Penninx B.W., Newman A.B., Kritchevsky S.B., Nicklas B.J., Sutton-Tyrrell K., Rubin S.M., Ding J., Simonsick E.M., Harris T.B., et al. Inflammatory markers and onset of cardiovascular events: Results from the Health ABC study. Circulation. 2003;108:2317–2322. doi: 10.1161/01.CIR.0000097109.90783.FC.
    1. He L.P., Tang X.Y., Ling W.H., Chen W.Q., Chen Y.M. Early C-reactive protein in the prediction of long-term outcomes after acute coronary syndromes: A meta-analysis of longitudinal studies. Heart. 2010;96:339–346. doi: 10.1136/hrt.2009.174912.
    1. Patt B.T., Jarjoura D., Haddad D.N., Sen C.K., Roy S., Flavahan N.A., Khayat R.N. Endothelial dysfunction in the microcirculation of patients with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2010;182:1540–1545. doi: 10.1164/rccm.201002-0162OC.
    1. Arnardottir E.S., Mackiewicz M., Gislason T., Teff K.L., Pack A.I. Molecular signatures of obstructive sleep apnea in adults: A review and perspective. Sleep. 2009;32:447–470. doi: 10.1093/sleep/32.4.447.
    1. Gabryelska A., Łukasik Z.M., Makowska J.S., Białasiewicz P. Obstructive Sleep Apnea: From Intermittent Hypoxia to Cardiovascular Complications via Blood Platelets. Front. Neurol. 2018;9:635. doi: 10.3389/fneur.2018.00635.
    1. Reid M.B., Lännergren J., Westerblad H. Respiratory and limb muscle weakness induced by tumor necrosis factor-alpha: Involvement of muscle myofilaments. Am. J. Respir. Crit. Care Med. 2002;166:479–484. doi: 10.1164/rccm.2202005.
    1. Boyd J.H., Petrof B.J., Hamid Q., Fraser R., Kimoff R.J. Upper airway muscle inflammation and denervation changes in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2004;170:541–546. doi: 10.1164/rccm.200308-1100OC.
    1. Huang T., Goodman M., Li X., Sands S.A., Li J., Stampfer M.J., Saxena R., Tworoger S.S., Redline S. C-reactive Protein and Risk of OSA in Four US Cohorts. Chest. 2021;159:2439–2448. doi: 10.1016/j.chest.2021.01.060.
    1. Nadeem R., Molnar J., Madbouly E.M., Nida M., Aggarwal S., Sajid H., Naseem J., Loomba R. Serum inflammatory markers in obstructive sleep apnea: A meta-analysis. J. Clin. Sleep Med. 2013;9:1003–1012. doi: 10.5664/jcsm.3070.
    1. Kheirandish-Gozal L., Gozal D. Obstructive Sleep Apnea and Inflammation: Proof of Concept Based on Two Illustrative Cytokines. Int. J. Mol. Sci. 2019;20:459. doi: 10.3390/ijms20030459.
    1. Ming H., Tian A., Liu B., Hu Y., Liu C., Chen R., Cheng L. Inflammatory cytokines tumor necrosis factor-α, interleukin-8 and sleep monitoring in patients with obstructive sleep apnea syndrome. Exp. Ther. Med. 2019;17:1766–1770. doi: 10.3892/etm.2018.7110.
    1. Mukherjee S., Saxena R., Palmer L.J. The genetics of obstructive sleep apnoea. Respirology. 2018;23:18–27. doi: 10.1111/resp.13212.
    1. Kent B.D., Ryan S., McNicholas W.T. The genetics of obstructive sleep apnoea. Curr. Opin. Pulm. Med. 2010;16:536–542. doi: 10.1097/MCP.0b013e32833ef7fe.
    1. Popko K., Gorska E., Potapinska O., Wasik M., Stoklosa A., Plywaczewski R., Winiarska M., Gorecka D., Sliwinski P., Popko M., et al. Frequency of distribution of inflammatory cytokines IL-1, IL-6 and TNF-alpha gene polymorphism in patients with obstructive sleep apnea. J. Physiol. Pharmacol. 2008;59(Suppl. 6):607–614.
    1. Bhushan B., Guleria R., Misra A., Luthra K., Vikram N.K. TNF-alpha gene polymorphism and TNF-alpha levels in obese Asian Indians with obstructive sleep apnea. Respir. Med. 2009;103:386–392. doi: 10.1016/j.rmed.2008.10.001.
    1. Bhatt S.P., Guleria R., Vikram N.K., Vivekanandhan S., Singh Y., Gupta A.K. Association of inflammatory genes in obstructive sleep apnea and non alcoholic fatty liver disease in Asian Indians residing in north India. PLoS ONE. 2018;13:e0199599. doi: 10.1371/journal.pone.0199599.
    1. Riha R.L., Brander P., Vennelle M., Mcardle N., Kerr S.M., Anderson N.H., Douglas N.J. Tumour necrosis factor-α (-308) gene polymorphism in obstructive sleep apnoea–hypopnoea syndrome. Eur. Respir. J. 2005;26:673–678. doi: 10.1183/09031936.05.00130804.
    1. Khalyfa A., Serpero L.D., Kheirandish-Gozal L., Capdevila O.S., Gozal D. TNF-α gene polymorphisms and excessive daytime sleepiness in pediatric obstructive sleep apnea. J. Pediatr. 2011;158:77–82. doi: 10.1016/j.jpeds.2010.07.032.
    1. Huang R., Zhao S.R., Li Y., Liu F., Gong Y., Xing J., Xu Z.S. Association of tumor necrosis factor-α gene polymorphisms and coronary artery disease susceptibility: A systematic review and meta-analysis. BMC Med. Genet. 2020;21:29. doi: 10.1186/s12881-020-0952-2.
    1. Peker Y., Glantz H., Thunstrom E., Kallryd A., Herlitz J., Ejdeback J. Rationale and design of the Randomized Intervention with CPAP in Coronary Artery Disease and Sleep Apnoea—RICCADSA trial. Scand. Cardiovasc. J. 2009;43:24–31. doi: 10.1080/14017430802276106.
    1. Peker Y., Glantz H., Eulenburg C., Wegscheider K., Herlitz J., Thunstrom E. Effect of Positive Airway Pressure on Cardiovascular Outcomes in Coronary Artery Disease Patients with Nonsleepy Obstructive Sleep Apnea. The RICCADSA Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2016;194:613–620. doi: 10.1164/rccm.201601-0088OC.
    1. Quan S.F., Gillin J.C., Littner M.R., Shepard J.W. Sleep-related breathing disorders in adults: Recommendations for syndrome definition and measurement techniques in clinical research. Rep. Am. Acad. Sleep Med. Task Force Sleep. 1999;22:667–689.
    1. Johns M.W. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep. 1991;14:540–545. doi: 10.1093/sleep/14.6.540.
    1. WHO Obesity: Preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ. Tech. Rep. Ser. 2000;894:1–253.
    1. Thunström E., Glantz H., Fu M., Yucel-Lindberg T., Petzold M., Lindberg K., Peker Y. Increased inflammatory activity in nonobese patients with coronary artery disease and obstructive sleep apnea. Sleep. 2015;38:463–471. doi: 10.5665/sleep.4510.
    1. Lederer D.J., Bell S.C., Branson R., Chalmers J.D., Marshall R., Maslove D.M., Ost D.E., Punjabi N.M., Schatz M., Smyth A.R., et al. Control of Confounding and Reporting of Results in Causal Inference Studies. Guidance for Authors from Editors of Respiratory, Sleep, and Critical Care Journals. Ann. Am. Thorac. Soc. 2019;16:22–28. doi: 10.1513/AnnalsATS.201808-564PS.
    1. Karkucak M., Ursavaş A., Ocakoglu G., Gorukmez O., Yakut T., Ercan I., Karadağ M. Analysis of TNF-alpha G308A and C857T Gene Polymorphisms in Turkish Patients with Obstructive Sleep Apnea Syndrome. Turk. Klin. J. Med Sci. 2012;32:1368–1373. doi: 10.5336/medsci.2012-28126.
    1. Huang J., Liao N., Huang Q.-P., Xie Z.-F. Association between Tumor Necrosis Factor-α-308G/A Polymorphism and Obstructive Sleep Apnea: A Meta-Analysis. Genet. Test. Mol. Biomark. 2012;16:246–251. doi: 10.1089/gtmb.2011.0170.
    1. Wu Y., Cao C., Wu Y., Zhang C., Zhu C., Ying S., Chen Z., Shen H., Li W. TNF-α-308G/A Polymorphism Contributes to Obstructive Sleep Apnea Syndrome Risk: Evidence Based on 10 Case-Control Studies. PLoS ONE. 2014;9:e106183. doi: 10.1371/journal.pone.0106183.
    1. Kazemi E., Jamialahmadi K., Avan A., Mirhafez S.R., Mohiti J., Pirhoushiaran M., Hosseini N., Mohammadi A., Ferns G.A., Pasdar A., et al. Association of tumor necrosis factor-α-308 G/A gene polymorphism with coronary artery diseases: An evidence-based study. J. Clin. Lab. Anal. 2018;32:e22153. doi: 10.1002/jcla.22153.
    1. Nejati P., Naeimipour S., Salehi A., Shahbazi M. Association of tumor necrosis factor-alpha gene promoter polymorphism and its mRNA expression level in coronary artery disease. Meta Gene. 2018;18:122–126. doi: 10.1016/j.mgene.2018.08.009.
    1. Yuepeng J., Zhao X., Zhao Y., Li L. Gene polymorphism associated with TNF-α (G308A) IL-6 (C174G) and susceptibility to coronary atherosclerotic heart disease: A meta-analysis. Medicine. 2019;98:e13813. doi: 10.1097/MD.0000000000013813.
    1. Li Q., Zheng X. Tumor necrosis factor alpha is a promising circulating biomarker for the development of obstructive sleep apnea syndrome: A meta-analysis. Oncotarget. 2017;8:27616–27626. doi: 10.18632/oncotarget.15203.
    1. Thunström E., Glantz H., Yucel-Lindberg T., Lindberg K., Saygin M., Peker Y. CPAP Does Not Reduce Inflammatory Biomarkers in Patients with Coronary Artery Disease and Nonsleepy Obstructive Sleep Apnea: A Randomized Controlled Trial. Sleep. 2017;40:zsx157. doi: 10.1093/sleep/zsx157.
    1. Kroeger K.M., Carville K.S., Abraham L.J. The -308 tumor necrosis factor-alpha promoter polymorphism effects transcription. Mol. Immunol. 1997;34:391–399. doi: 10.1016/S0161-5890(97)00052-7.
    1. Cade B.E., Chen H., Stilp A.M., Louie T., Ancoli-Israel S., Arens R., Barfield R., Below J.E., Cai J., Redline S., et al. Associations of variants in the hexokinase 1 and interleukin 18 receptor regions with oxyhemoglobin saturation during sleep. PLoS Genet. 2019;15:e1007739. doi: 10.1371/journal.pgen.1007739.
    1. Szmyd B., Rogut M., Białasiewicz P., Gabryelska A. The impact of glucocorticoids and statins on sleep quality. Sleep Med. Rev. 2021;55:101380. doi: 10.1016/j.smrv.2020.101380.
    1. Campbell A.J., Neill A.M., Scott D. Clinical Reproducibility of the Epworth Sleepiness Scale for Patients with Suspected Sleep Apnea. J. Clin. Sleep Med. 2018;14:791–795. doi: 10.5664/jcsm.7108.
    1. Wise M.S. Objective measures of sleepiness and wakefulness: Application to the real world? J. Clin. Neurophysiol. 2006;23:39–49. doi: 10.1097/01.wnp.0000190416.62482.42.

Source: PubMed

3
Tilaa