A novel consortium of Lactobacillus rhamnosus and Streptococcus thermophilus for increased access to functional fermented foods

Remco Kort, Nieke Westerik, L Mariela Serrano, François P Douillard, Willi Gottstein, Ivan M Mukisa, Coosje J Tuijn, Lisa Basten, Bert Hafkamp, Wilco C Meijer, Bas Teusink, Willem M de Vos, Gregor Reid, Wilbert Sybesma, Remco Kort, Nieke Westerik, L Mariela Serrano, François P Douillard, Willi Gottstein, Ivan M Mukisa, Coosje J Tuijn, Lisa Basten, Bert Hafkamp, Wilco C Meijer, Bas Teusink, Willem M de Vos, Gregor Reid, Wilbert Sybesma

Abstract

Background: The lactic acid bacterium Lactobacillus rhamnosus GG is the most studied probiotic bacterium with proven health benefits upon oral intake, including the alleviation of diarrhea. The mission of the Yoba for Life foundation is to provide impoverished communities in Africa increased access to Lactobacillus rhamnosus GG under the name Lactobacillus rhamnosus yoba 2012, world's first generic probiotic strain. We have been able to overcome the strain's limitations to grow in food matrices like milk, by formulating a dried starter consortium with Streptococcus thermophilus that enables the propagation of both strains in milk and other food matrices. The affordable seed culture is used by people in resource-poor communities.

Results: We used S. thermophilus C106 as an adjuvant culture for the propagation of L. rhamnosus yoba 2012 in a variety of fermented foods up to concentrations, because of its endogenous proteolytic activity, ability to degrade lactose and other synergistic effects. Subsequently, L. rhamnosus could reach final titers of 1E+09 CFU ml(-1), which is sufficient to comply with the recommended daily dose for probiotics. The specific metabolic interactions between the two strains were derived from the full genome sequences of L. rhamnosus GG and S. thermophilus C106. The piliation of the L. rhamnosus yoba 2012, required for epithelial adhesion and inflammatory signaling in the human host, was stable during growth in milk for two rounds of fermentation. Sachets prepared with the two strains, yoba 2012 and C106, retained viability for at least 2 years.

Conclusions: A stable dried seed culture has been developed which facilitates local and low-cost production of a wide range of fermented foods that subsequently act as delivery vehicles for beneficial bacteria to communities in east Africa.

Figures

Fig. 1
Fig. 1
Chromosomal regions of different streptococci genome sequences. aS. thermophilus C106; bS. thermophilus LMD-9; cS. thermophilus JIM8232; dS. thermophilus MN-ZLW-002; eS. thermophilus CNRZ1066 and fS. thermophilus LMG 1831 depicting the genomic island flanked by mobile elements of four open reading frames: potC (truncated), potD, eriC, prtS. Other genes in this figure are coaA (pantothenate kinase), ciaH (sensor protein), fhs (formate-tetrahydrofolate), pgmA (phosphoglucomutase), metF (methylenetetrahydrofolate reductase), metE (5-methyltetrahyropteroltriglutamate-homocysteine S-methyl transferase), pabB (para-amino benzoate synthase component I), pacL1 (Ca2+, Mn2+, P-ATPase)
Fig. 2
Fig. 2
Fermentation profile of S. thermophilus C106 in milk at different temperatures. (filled circle) 32 °C; (filled triangle) 37 °C; (filled square) 42 °C; (unfilled square) 45 °C
Fig. 3
Fig. 3
Fermentation capacity of seed cultures in pasteurized semi-skimmed milk inoculated after different storage time and at different growth temperatures. 45 °C, 2 years old (filled circle, unfilled circle); 45 °C fresh (filled triangle, unfilled triangle); 37 °C 2 years old (filled square, unfilled square)
Fig. 4
Fig. 4
Transmission electron microscopy observations of piliated Lactobacillus rhamnosus strain yoba 2012. Cells were isolated from fermented milk and immuno-gold labeled with anti-SpaA antibodies and gold particule-conjugated protein A. Gold particules (5 nm) co-localize with pilus structures (black dots on pictures)
Fig. 5
Fig. 5
Immunoblotting analysis of fermented milk after first (a) and second passage (b) using anti-SpaA serum. Single L. rhamnosus colonies were randomly picked from 2-day old MRS agar plates and analyzed by immunoblotting using anti-SpaA polyclonal antibodies. In a 70 out of 72 colonies tested were pilus positive (97.2 %). In b 101 out of 108 colonies tested were pilus positive (93.5 %). Note: a third immunoblotting (not shown in Fig. 5) was performed for sample 2b and included in the piliation percentage calculation above. Piliation phenotype of some colonies tested was further confirmed by PCR analysis as described in the “Methods”
Fig. 6
Fig. 6
Additional benefits of foods fermented with Lactobacillus rhamnosus. a Growth of the pathogen Cronobacter sakazakii in sorghum in presence (unfilled circle) and absence (filled circle) of fermenting Lactobacillus rhamnosus. b Change in vitamin B content of soy after and before fermentation

References

    1. Collaborators GBoDS. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015.
    1. Szajewska H, Wanke M, Patro B. Meta-analysis: the effects of Lactobacillus rhamnosus GG supplementation for the prevention of healthcare-associated diarrhoea in children. Aliment Pharmacol Ther. 2011;34:1079–1087. doi: 10.1111/j.1365-2036.2011.04837.x.
    1. Chilton SN, Burton JP, Reid G. Inclusion of fermented foods in food guides around the world. Nutrients. 2015;7:390–404. doi: 10.3390/nu7010390.
    1. Franz CM, Huch M, Mathara JM, Abriouel H, Benomar N, Reid G, Galvez A, Holzapfel WH. African fermented foods and probiotics. Int J Food Microbiol. 2014;190:84–96. doi: 10.1016/j.ijfoodmicro.2014.08.033.
    1. Balikowa D. A review of Uganda’s dairy industry. Retrieved from the Dairy Development Authority. 2011. .
    1. Monachese M, Cunningham-Rundles S, Diaz MA, Guerrant R, Hummelen R, Kemperman R, Kerac M, Kort R, Merenstein D, Panigrahi P, et al. Probiotics and prebiotics to combat enteric infections and HIV in the developing world: a consensus report. Gut Microbes. 2011;2:198–207. doi: 10.4161/gmic.2.3.16106.
    1. Reid G, Nduti N, Sybesma W, Kort R, Kollmann TR, Adam R, Boga H, Brown EM, Einerhand A, El-Nezami H, et al. Harnessing microbiome and probiotic research in sub-Saharan Africa: recommendations from an African workshop. Microbiome. 2014;2:12. doi: 10.1186/2049-2618-2-12.
    1. Sybesma W, Molenaar D. van IW, Venema K, Kort R: genome instability in Lactobacillus rhamnosus GG. Appl Environ Microbiol. 2013;79:2233–2239. doi: 10.1128/AEM.03566-12.
    1. Kort R, Sybesma W. Probiotics for every body. Trends Biotechnol. 2012;30:613–615. doi: 10.1016/j.tibtech.2012.09.002.
    1. Douillard FP, Ribbera A, Kant R, Pietila TE, Jarvinen HM, Messing M, Randazzo CL, Paulin L, Laine P, Ritari J, et al. Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG. PLoS Genet. 2013;9:e1003683. doi: 10.1371/journal.pgen.1003683.
    1. Ardita CS, Mercante JW, Kwon YM, Luo L, Crawford ME, Powell DN, Jones RM, Neish AS. Epithelial adhesion mediated by pilin SpaC is required for Lactobacillus rhamnosus GG-induced cellular responses. Appl Environ Microbiol. 2014;80:5068–5077. doi: 10.1128/AEM.01039-14.
    1. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx AP, Lebeer S, et al. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc Natl Acad Sci USA. 2009;106:17193–17198. doi: 10.1073/pnas.0908876106.
    1. Reunanen J, von Ossowski I, Hendrickx AP, Palva A, de Vos WM. Characterization of the SpaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG. Appl Environ Microbiol. 2012;78:2337–2344. doi: 10.1128/AEM.07047-11.
    1. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–36. doi: 10.1093/nar/28.1.33.
    1. Delorme C, Bartholini C, Bolotine A, Ehrlich SD, Renault P. Emergence of a cell wall protease in the Streptococcus thermophilus population. Appl Environ Microbiol. 2010;76:451–460. doi: 10.1128/AEM.01018-09.
    1. Letort C, Nardi M, Garault P, Monnet V, Juillard V. Casein utilization by Streptococcus thermophilus results in a diauxic growth in milk. Appl Environ Microbiol. 2002;68:3162–3165. doi: 10.1128/AEM.68.6.3162-3165.2002.
    1. Letort C, Juillard V. Development of a minimal chemically-defined medium for the exponential growth of Streptococcus thermophilus. J Appl Microbiol. 2001;91:1023–1029. doi: 10.1046/j.1365-2672.2001.01469.x.
    1. Pastink MI, Teusink B, Hols P, Visser S, de Vos WM, Hugenholtz J. Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria. Appl Environ Microbiol. 2009;75:3627–3633. doi: 10.1128/AEM.00138-09.
    1. Morita H, Toh H, Oshima K, Murakami M, Taylor TD, Igimi S, Hattori M. Complete genome sequence of the probiotic Lactobacillus rhamnosus ATCC 53103. J Bacteriol. 2009;191:7630–7631. doi: 10.1128/JB.01287-09.
    1. Sieuwerts S, de Bok FA, Hugenholtz J. van Hylckama Vlieg JE: Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl Environ Microbiol. 2008;74:4997–5007. doi: 10.1128/AEM.00113-08.
    1. Douillard FP, Ribbera A, Jarvinen HM, Kant R, Pietila TE, Randazzo C, Paulin L, Laine PK, Caggia C, von Ossowski I, et al. Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics. Appl Environ Microbiol. 2013;79:1923–1933. doi: 10.1128/AEM.03467-12.
    1. Sieuwerts S. Analysis of molecular interactions between yoghurt bacteria by an integrated genomics approach. 2009.
    1. Sybesma W, Kort R. Benefits of and access to locally produced functional fermented foods in Africa. In: The International Scientific Conference on Probiotics and Prebiotics. Budapest; 2015.
    1. Mpofu A, Linnemann AR, Nout MJ, Zwietering MH, Smid EJ, den Besten HM. Inactivation of bacterial pathogens in yoba mutandabota, a dairy product fermented with the probiotic Lactobacillus rhamnosus yoba. Int J Food Microbiol. 2015;217:42–48. doi: 10.1016/j.ijfoodmicro.2015.09.016.
    1. Holzapfel WH. Appropriate starter culture technologies for small-scale fermentation in developing countries. Int J Food Microbiol. 2002;75:197–212. doi: 10.1016/S0168-1605(01)00707-3.
    1. Lahtinen SJ, Haskard CA, Ouwehand AC, Salminen SJ, Ahokas JT. Binding of aflatoxin B1 to cell wall components of Lactobacillus rhamnosus strain GG. Food Addit Contam. 2004;21:158–164. doi: 10.1080/02652030310001639521.
    1. Zoghi A, Khosravi-Darani K, Sohrabvandi S. Surface binding of toxins and heavy metals by probiotics. Mini Rev Med Chem. 2014;14:84–98. doi: 10.2174/1389557513666131211105554.
    1. Bisanz JE, Enos MK, Mwanga JR, Changalucha J, Burton JP, Gloor GB, Reid G. Randomized open-label pilot study of the influence of probiotics and the gut microbiome on toxic metal levels in Tanzanian pregnant women and school children. MBio. 2014;5:e01580. doi: 10.1128/mBio.01580-14.
    1. Guarino A, Guandalini S, Lo Vecchio A. Probiotics for Prevention and Treatment of Diarrhea. J Clin Gastroenterol. 2015;49(Suppl 1):S37–S45. doi: 10.1097/MCG.0000000000000349.
    1. Allen SJ, Martinez EG, Gregorio GV, Dans LF. Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst Rev. 2010:CD003048.
    1. de Roos NM, Katan MB. Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. Am J Clin Nutr. 2000;71:405–411.
    1. Nakawesi JS, Wobudeya E, Ndeezi G, Mworozi EA, Tumwine JK. Prevalence and factors associated with rotavirus infection among children admitted with acute diarrhea in Uganda. BMC Pediatr. 2010;10:69. doi: 10.1186/1471-2431-10-69.
    1. Sybesma W, Kort R, Lee YK. Locally sourced probiotics, the next opportunity for developing countries? Trends Biotechnol. 2015;33:197–200. doi: 10.1016/j.tibtech.2015.01.002.
    1. Notebaart RA, van Enckevort FH, Francke C, Siezen RJ, Teusink B. Accelerating the reconstruction of genome-scale metabolic networks. BMC Bioinformatics. 2006;7:296. doi: 10.1186/1471-2105-7-296.
    1. Khandelwal RA, Olivier BG, Roling WF, Teusink B, Bruggeman FJ. Community flux balance analysis for microbial consortia at balanced growth. PLoS One. 2013;8:e64567. doi: 10.1371/journal.pone.0064567.
    1. Olivier BG, Rohwer JM, Hofmeyr JH. Modelling cellular systems with PySCeS. Bioinformatics. 2005;21:560–561. doi: 10.1093/bioinformatics/bti046.
    1. Ahlroos T, Tynkkynen S. Quantitative strain-specific detection of Lactobacillus rhamnosus GG in human faecal samples by real-time PCR. J Appl Microbiol. 2009;106:506–514. doi: 10.1111/j.1365-2672.2008.04018.x.
    1. Douillard FP, Rasinkangas P, von Ossowski I, Reunanen J, Palva A, de Vos WM. Functional identification of conserved residues involved in Lactobacillus rhamnosus strain GG sortase specificity and pilus biogenesis. J Biol Chem. 2014;289:15764–15775. doi: 10.1074/jbc.M113.542332.
    1. Mukisa IM, Porcellato D, Byaruhanga YB, Muyanja CM, Rudi K, Langsrud T, Narvhus JA. The dominant microbial community associated with fermentation of Obushera (sorghum and millet beverages) determined by culture-dependent and culture-independent methods. Int J Food Microbiol. 2012;160:1–10. doi: 10.1016/j.ijfoodmicro.2012.09.023.
    1. Mpofu A, Linnemann AR, Sybesma W, Kort R, Nout MJ, Smid EJ. Development of a locally sustainable functional food based on mutandabota, a traditional food in southern Africa. J Dairy Sci. 2014;97:2591–2599. doi: 10.3168/jds.2013-7593.
    1. Kort R, Sybesma W. The Yoba for Life foundation. 2015. . Accessed 25 October 2015.

Source: PubMed

3
Tilaa