Stool fatty acid soaps, stool consistency and gastrointestinal tolerance in term infants fed infant formulas containing high sn-2 palmitate with or without oligofructose: a double-blind, randomized clinical trial

Joyce Nowacki, Hung-Chang Lee, Reyin Lien, Shao-Wen Cheng, Sung-Tse Li, Manjiang Yao, Robert Northington, Ingrid Jan, Gisella Mutungi, Joyce Nowacki, Hung-Chang Lee, Reyin Lien, Shao-Wen Cheng, Sung-Tse Li, Manjiang Yao, Robert Northington, Ingrid Jan, Gisella Mutungi

Abstract

Background: Formula-fed (FF) infants often have harder stools and higher stool concentrations of fatty acid soaps compared to breastfed infants. Feeding high sn-2 palmitate or the prebiotic oligofructose (OF) may soften stools, reduce stool soaps, and decrease fecal calcium loss.

Methods: We investigated the effect of high sn-2 palmitate alone and in combination with OF on stool palmitate soap, total soap and calcium concentrations, stool consistency, gastrointestinal (GI) tolerance, anthropometrics, and hydration in FF infants. This double-blind trial randomized 165 healthy term infants 25-45 days old to receive Control formula (n = 54), formula containing high sn-2 palmitate (sn-2; n = 56), or formula containing high sn-2 palmitate plus 3 g/L OF (sn-2+OF; n = 55). A non-randomized human milk (HM)-fed group was also included (n = 55). The primary endpoint, stool composition, was determined after 28 days of feeding, and was assessed using ANOVA accompanied by pairwise comparisons. Stool consistency, GI tolerance and hydration were assessed at baseline, day 14 (GI tolerance only) and day 28.

Results: Infants fed sn-2 had lower stool palmitate soaps compared to Control (P = 0.0028); while those fed sn-2+OF had reduced stool palmitate soaps compared to both Control and sn-2 (both P < 0.0001). Stool total soaps and calcium were lower in the sn-2+OF group than either Control (P < 0.0001) or sn-2 (P < 0.0001). The HM-fed group had lower stool palmitate soaps, total soaps and calcium (P < 0.0001 for each comparison) than all FF groups. The stool consistency score of the sn-2+OF group was lower than Control and sn-2 (P < 0.0001), but higher than the HM-fed group (P < 0.0001). GI tolerance was similar and anthropometric z-scores were <0.2 SD from the WHO growth standards in all groups, while urinary hydration markers were within normal range for all FF infants.

Conclusions: Increasing sn-2 palmitate in infant formula reduces stool palmitate soaps. A combination of high sn-2 palmitate and OF reduces stool palmitate soaps, total soaps and calcium, while promoting softer stools.

Trial registration: This study was registered on http://www.clinicaltrials.gov: number NCT02031003.

Figures

Figure 1
Figure 1
Study flow diagram. Control = bovine milk-based, whey-predominant, alpha-lactalbumin-enriched term infant formula with 100% vegetable fat blend; HM = human milk; sn-2 = high sn-2 palmitate formula (Control formula modified to contain 60% vegetable fat blend and 40% high sn-2 palmitate fat blend); sn-2+OF = high sn-2 palmitate formula supplemented with oligofructose at 3.0 g/L.
Figure 2
Figure 2
Stool palmitate soaps (mg/g dry weight stool) at Day 28 according to feeding group.1Values are means ± SD. The overall formula-fed groups were analyzed by ANOVA followed by pairwise comparisons. The HM group was compared to each formula group using independent t-tests. Means (± SD) significantly different from Control: *P =0.0028, †P <0.0001; significantly different from sn-2: ‡P <0.0001; significantly different from all formula groups: §P <0.0001. Control = bovine milk-based, whey-predominant, alpha-lactalbumin-enriched term infant formula with 100% vegetable fat blend; HM = human milk; dw = dry weight; sn-2 = high sn-2 palmitate formula (Control formula modified to contain 60% vegetable fat blend and 40% high sn-2 palmitate fat blend); sn-2+OF = high sn-2 palmitate formula supplemented with oligofructose at 3.0 g/L.
Figure 3
Figure 3
Stool calcium (mg/g dry weight stool) at Day 28 according to feeding group.1Values are means ± SD. The overall formula-fed groups were analyzed by ANOVA followed by pairwise comparisons; the HM group was compared to each formula group using independent t-tests. Means (± SD) significantly different from Control: *P <0.0001; significantly different from sn-2: †P <0.0001; significantly different from all formula groups: ‡P <0.0001. Control = bovine milk-based, whey-predominant, alpha-lactalbumin-enriched term infant formula with 100% vegetable fat blend; dw = dry weight; HM = human milk; sn-2 = high sn-2 palmitate formula (Control formula modified to contain 60% vegetable fat blend and 40% high sn-2 palmitate fat blend); sn-2+OF = high sn-2 palmitate formula supplemented with oligofructose at 3.0 g/L.
Figure 4
Figure 4
Stool consistency scores at day 28 according to feeding group.1Individual stool consistency scores were determined using a five point scale for stool consistency (1 = watery, 2 = runny, 3 = mushy soft, 4 = formed, and 5 = hard). 2 Values are means (± SD). Means (± SD) significantly different from Control: *P <0.0001; significantly different from sn-2: †P <0.0001; significantly different from all formula groups: ‡P <0.0001. Control = bovine milk-based, whey-predominant, alpha-lactalbumin-enriched term infant formula with 100% vegetable fat blend; HM = human milk; sn-2 = high sn-2 palmitate formula (Control formula modified to contain 60% vegetable fat blend and 40% high sn-2 palmitate fat blend); sn-2+OF = high sn-2 palmitate formula supplemented with oligofructose at 3.0 g/L.

References

    1. Innis SM. Dietary triacylglycerol structure and its role in infant nutrition. Adv Nutr. 2011;2:275–283. doi: 10.3945/an.111.000448.
    1. Tomarelli RM, Meyer BJ, Weaber JR, Bernhart FW. Effect of positional distribution on the absorption of the fatty acids of human milk and infant formulas. J Nutr. 1968;95:583–590.
    1. Lammi-Keefe CJ, Jensen RG. Lipids in human milk: a review. 2: composition and fat-soluble vitamins. J Pediatr Gastroenterol Nutr. 1984;3:172–198. doi: 10.1097/00005176-198403000-00004.
    1. Straarup EM, Lauritzen L, Faerk J, Hoy Deceased CE, Michaelsen KF. The stereospecific triacylglycerol structures and fatty acid profiles of human milk and infant formulas. J Pediatr Gastroenterol Nutr. 2006;42:293–299. doi: 10.1097/01.mpg.0000214155.51036.4f.
    1. Quinlan PT, Lockton S, Irwin J, Lucas AL. The relationship between stool hardness and stool composition in breast- and formula-fed infants. J Pediatr Gastroenterol Nutr. 1995;20:81–90. doi: 10.1097/00005176-199501000-00014.
    1. Veereman-Wauters G, Staelens S, Van de Broek H, Plaskie K, Wesling F, Roger LC, McCartney AL, Assam P. Physiological and bifidogenic effects of prebiotic supplements in infant formulae. J Pediatr Gastroenterol Nutr. 2011;52:763–771. doi: 10.1097/MPG.0b013e3182139f39.
    1. Roberfroid M, Gibson GR, Delzenne N. The biochemistry of oligofructose, a nondigestible fiber: an approach to calculate its caloric value. Nutr Rev. 1993;51:137–146. doi: 10.1111/j.1753-4887.1993.tb03090.x.
    1. Scholz-Ahrens KE, Ade P, Marten B, Weber P, Timm W, Acil Y, Gluer CC, Schrezenmeir J. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr. 2007;137:838S–846S.
    1. Griffin IJ, Davila PM, Abrams SA. Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br J Nutr. 2002;87(Suppl 2):S187–S191. doi: 10.1079/BJN/2002536.
    1. Weaver LT, Ewing G, Taylor LC. The bowel habit of milk-fed infants. J Pediatr Gastroenterol Nutr. 1988;7:568–571. doi: 10.1097/00005176-198807000-00015.
    1. Morley R, Abbott RA, Lucas A. Infant feeding and maternal concerns about stool hardness. Child Care Health Dev. 1997;23:475–478. doi: 10.1111/j.1365-2214.1997.tb00916.x.
    1. Yao M, Riley A, Trabulsi J, Northington R, DeRusso P. Use of an electronic handheld diary to validate a new parent questionnaire assessing gastrointestinal tolerance in infants. J Pediatr Gastroenterol Nutr. 2010;50(suppl 2):E208.
    1. AOAC . AOAC International. Official Methods of Analysis of AOAC International: Method 968.06. 17. Gaithersburg, MD, USA: AOAC; 2000.
    1. Kennedy K, Fewtrell MS, Morley R, Abbott R, Quinlan PT, Wells JC, Bindels JG, Lucas A. Double-blind, randomized trial of a synthetic triacylglycerol in formula-fed term infants: effects on stool biochemistry, stool characteristics, and bone mineralization. Am J Clin Nutr. 1999;70:920–927.
    1. Lopez-Lopez A, Castellote-Bargallo AI, Campoy-Folgoso C, Rivero-Urgel M, Tormo-Carnice R, Infante-Pina D, Lopez-Sabater MC. The influence of dietary palmitic acid triacylglyceride position on the fatty acid, calcium and magnesium contents of at term newborn faeces. Early Hum Dev. 2001;65(Suppl):S83–S94. doi: 10.1016/S0378-3782(01)00210-9.
    1. Carnielli VP, Luijendijk IH, Van Goudoever JB, Sulkers EJ, Boerlage AA, Degenhart HJ, Sauer PJ. Structural position and amount of palmitic acid in infant formulas: effects on fat, fatty acid, and mineral balance. J Pediatr Gastroenterol Nutr. 1996;23:553–560. doi: 10.1097/00005176-199612000-00007.
    1. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125:1401–1412.
    1. Fanaro S, Jelinek J, Stahl B, Boehm G, Kock R, Vigi V. Acidic oligosaccharides from pectin hydrolysate as new component for infant formulae: effect on intestinal flora, stool characteristics, and pH. J Pediatr Gastroenterol Nutr. 2005;41:186–190. doi: 10.1097/01.mpg.0000172747.64103.d7.
    1. Kolida S, Tuohy K, Gibson G. Prebiotic effects of inulin and oligofructose. Br J Nutr. 2002;87:S193–S197. doi: 10.1079/BJN/2002537.
    1. Holscher HD, Faust KL, Czerkies LA, Litov R, Ziegler EE, Lessin H, Hatch T, Sun S, Tappenden KA. Effects of prebiotic-containing infant formula on gastrointestinal tolerance and fecal microbiota in a randomized controlled trial. JPEN J Parenter Enteral Nutr. 2012;36:95S–105S. doi: 10.1177/0148607111430087.
    1. Bakker-Zierikzee AM, Alles MS, Knol J, Kok FJ, Tolboom JJ, Bindels JG. Effects of infant formula containing a mixture of galacto- and fructo-oligosaccharides or viable Bifidobacterium animalis on the intestinal microflora during the first 4 months of life. Br J Nutr. 2005;94:783–790. doi: 10.1079/BJN20051451.
    1. Greger JL. Nondigestible carbohydrates and mineral bioavailability. J Nutr. 1999;129:1434S–1435S.
    1. Abrams SA, Griffin IJ, Hawthorne KM. Young adolescents who respond to an inulin-type fructan substantially increase total absorbed calcium and daily calcium accretion to the skeleton. J Nutr. 2007;137:2524S–2526S.
    1. Kunz C, Rudloff S, Baier W, Klein N, Strobel S. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr. 2000;20:699–722. doi: 10.1146/annurev.nutr.20.1.699.
    1. Moro G, Minoli I, Mosca M, Fanaro S, Jelinek J, Stahl B, Boehm G. Dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula-fed term infants. J Pediatr Gastroenterol Nutr. 2002;34:291–295. doi: 10.1097/00005176-200203000-00014.
    1. Euler AR, Mitchell DK, Kline R, Pickering LK. Prebiotic effect of fructo-oligosaccharide supplemented term infant formula at two concentrations compared with unsupplemented formula and human milk. J Pediatr Gastroenterol Nutr. 2005;40:157–164. doi: 10.1097/00005176-200502000-00014.
    1. Loo JV, Cummings J, Delzenne N, Englyst H, Franck A, Hopkins M, Kok N, Macfarlane G, Newton D, Quigley M. Functional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94-1095) Br J Nutr. 1999;81:121–132.
    1. Roberfroid MB. Inulin-type fructans: functional food ingredients. J Nutr. 2007;137:2493S–2502S.
    1. Schmelzle H, Wirth S, Skopnik H, Radke M, Knol J, Bockler HM, Bronstrup A, Wells J, Fusch C. Randomized double-blind study of the nutritional efficacy and bifidogenicity of a new infant formula containing partially hydrolyzed protein, a high beta-palmitic acid level, and nondigestible oligosaccharides. J Pediatr Gastroenterol Nutr. 2003;36:343–351. doi: 10.1097/00005176-200303000-00008.
    1. SCF . European Commission, Health and Consumer Protection Directorate-General. 27 September 2001. Europe: Scientific Committee on Food; 2001. Statement on the use of resistant short chain carbohydrates (oligofructose and oligogalactose) in infant formulae and in follow-on formulae; pp. 1–6.
    1. Closa-Monasterolo R, Gispert-Llaurado M, Luque V, Ferre N, Rubio-Torrents C, Zaragoza-Jordana M, Escribano J. Safety and efficacy of inulin and oligofructose supplementation in infant formula: results from a randomized clinical trial. Clin Nutr. 2013;32:918–927. doi: 10.1016/j.clnu.2013.02.009.

Source: PubMed

3
Tilaa