A Novel Endoscopic Ultrasonography Imaging Technique for Depicting Microcirculation in Pancreatobiliary Lesions without the Need for Contrast-Enhancement: A Prospective Exploratory Study

Yasunobu Yamashita, Takanori Yoshikawa, Hirofumi Yamazaki, Yuki Kawaji, Takashi Tamura, Keiichi Hatamaru, Masahiro Itonaga, Reiko Ashida, Yoshiyuki Ida, Takao Maekita, Mikitaka Iguchi, Masayuki Kitano, Yasunobu Yamashita, Takanori Yoshikawa, Hirofumi Yamazaki, Yuki Kawaji, Takashi Tamura, Keiichi Hatamaru, Masahiro Itonaga, Reiko Ashida, Yoshiyuki Ida, Takao Maekita, Mikitaka Iguchi, Masayuki Kitano

Abstract

Detective flow imaging endoscopic ultrasonography (DFI-EUS) provides a new method to image and detect fine vessels and low-velocity blood flow without using ultrasound contrast agents. The aim of this study was to evaluate the utility of DFI-EUS for pancreatobiliary lesions and lymph nodes. Between January 2019 and January 2020, 53 patients who underwent DFI-EUS, e-FLOW EUS, and contrast-enhanced EUS were enrolled. The ability of DFI-EUS and e-FLOW EUS to detect vessels was compared with that of contrast-enhanced EUS. This article describes the DFI technique along with our first experience of its use for vascular assessment of pancreatobiliary lesions. Vessels were imaged in 34 pancreatic solid lesions, eight intraductal papillary mucinous neoplasms (IPMNs), seven gall bladder lesions, and four swollen lymph nodes. DFI-EUS (91%) was significantly superior to e-FLOW EUS (53%) with respect to detection of vessels (p < 0.001) and for discrimination of mural nodules from mucous clots in IPMN and gallbladder lesions from sludge (p = 0.046). Thus, DFI-EUS has the potential to become an essential tool for diagnosis and vascular assessment of various diseases.

Keywords: contrast-enhanced endoscopic ultrasonography; detective flow imaging endoscopic ultrasonography; doppler endoscopic ultrasonography; novel technique; pancreatobiliary lesion; vessel detection.

Conflict of interest statement

The authors (M.K.) have received honoraria for speaking lectures in conferences from Olympus Corporation. The other authors declare that there is no conflict of interest regarding the publication of this study.

Figures

Figure 1
Figure 1
Doppler signals. The signals from motion artifacts overlap the low-speed flow components. Overlap due to motion artifact, which are unnecessary signals, hinders the visualization of low-flow signals.
Figure 2
Figure 2
Conventional Doppler and DFI images. When conventional Doppler techniques remove motion artifacts with a single-dimensional wall filter, not only overlaying tissue motion artifacts but also the low-flow component are removed. Consequently, the visibility of flow in smaller vessels is lost due to loss of low-flow data. On the other hand, DFI can separate flow signals from motion artifacts with a multi-dimensional filter, which analyzes motion artifacts and uses an adaptive algorithm to identify and remove tissue motion. Therefore, DFI overcomes this loss of low-flow signals by separating them from overlapping tissue motion artifacts without jeopardizing the visualization of low-flow components and, in addition, provides detailed vessel signals.
Figure 3
Figure 3
Comparison of DFI with conventional techniques. Conventional Doppler techniques are developed with the primary goal of visualizing blood flows at higher resolution. As a result, e-FLOW is currently the method that provides the best resolution. Moving beyond this goal, DFI is also able to visualize lower-velocity blood flow. DFI reveals a more accurate depiction of blood flow in comparison with conventional Doppler image.
Figure 4
Figure 4
A representative case of a mural nodule in a patient with an intraductal papillary mucinous neoplasm (IPMN). (a) DFI endoscopic ultrasonography shows vascularity in the mural lesion (arrow). (b) e-FLOW endoscopic ultrasonography shows no vascularity in the mural lesion (arrow). (c) Contrast-enhanced endoscopic ultrasonography shows vascularity in the mural lesion (arrow).
Figure 5
Figure 5
A representative case of a mucous clot in a patient with an intraductal papillary mucinous neoplasm (IPMN). (a) DFI endoscopic ultrasonography shows no vascularity in the mural lesion (arrow). (b) e-FLOW endoscopic ultrasonography shows no vascularity in the mural lesion (arrow). (c) Contrast-enhanced endoscopic ultrasonography shows no vascularity in the mural lesion (arrow).
Figure 5
Figure 5
A representative case of a mucous clot in a patient with an intraductal papillary mucinous neoplasm (IPMN). (a) DFI endoscopic ultrasonography shows no vascularity in the mural lesion (arrow). (b) e-FLOW endoscopic ultrasonography shows no vascularity in the mural lesion (arrow). (c) Contrast-enhanced endoscopic ultrasonography shows no vascularity in the mural lesion (arrow).
Figure 6
Figure 6
A representative case of a gallbladder cancer. (a) DFI endoscopic ultrasonography shows vascularity in the gallbladder lesion (arrow). (b) e-FLOW endoscopic ultrasonography shows no vascularity in the gallbladder lesion (arrow). (c) Contrast-enhanced endoscopic ultrasonography shows vascularity in the gallbladder lesion (arrow).
Figure 7
Figure 7
A representative case of gallbladder sludge. (a) DFI endoscopic ultrasonography shows no vascularity in the gallbladder lesion (arrow). (b) e-FLOW endoscopic ultrasonography shows no vascularity in the gallbladder lesion (arrow). (c) Contrast-enhanced endoscopic ultrasonography shows no vascularity in the gallbladder lesion (arrow).
Figure 8
Figure 8
Detection of vessels in normal pancreas by DFI and e-FLOW endoscopic ultrasonography. DFI endoscopic ultrasonography (upper) provides better detection of vessels in normal pancreas than e-FLOW endoscopic ultrasonography (lower).

References

    1. Ahmad N.A., Kochman M.L., Lewis J.D., Kadish S., Morris J.B., Rosato E.F., Ginsberg G.G. Endosonography is superior to angiography in the preoperative assessment of vascular involvement among patients with pancreatic carcinoma. J. Clin. Gastroenterol. 2001;32:54–58. doi: 10.1097/00004836-200101000-00013.
    1. DeWitt J., Devereaux B., Chriswell M., McGreevy K., Howard T., Imperiale T.F., Ciaccia D., Lane K.A., Maglinte D., Kopecky K., et al. Comparison of endoscopic ultrasonography and multidetector computed tomography for detecting and staging pancreatic cancer. Ann. Intern. Med. 2004;141:753–763. doi: 10.7326/0003-4819-141-10-200411160-00006.
    1. Zuccaro G., Sterling M.J. Endosonography in pancreatic disease: Differential diagnosis. In: Van Dam J., Sivak M.V., editors. Gastrointest Endoscopy. Saunders; Philadelphia, PA, USA: 1999. pp. 235–243.
    1. Das K., Kudo M., Kitano M., Sakamoto H., Komaki T., Takagi T., Yamao K. Diagnostic value of endoscopic ultrasound-guided directional eFLOW in solid pancreatic lesions. J. Med. Ultrason. 2013;40:211–218. doi: 10.1007/s10396-012-0412-5.
    1. Yamashita Y., Kato J., Ueda K., Nakamura Y., Kawaji Y., Abe H., Nuta J., Tamura T., Itonaga M., Yoshida T., et al. Contrast-Enhanced Endoscopic Ultrasonography for Pancreatic Tumors. Biomed Res. Int. 2015:491782. doi: 10.1155/2015/491782.
    1. Kitano M., Kudo M., Yamao K., Takagi T., Sakamoto H., Komaki T., Kamata K., Imai H., Chiba Y., Okada M., et al. Characterization of small solid tumors in the pancreas: The value of contrast-enhanced harmonic endoscopic ultrasonography. Am. J. Gastroenterol. 2012;107:303–310. doi: 10.1038/ajg.2011.354.
    1. Omoto S., Takenaka M., Kitano M., Miyata T., Kamata K., Minaga K., Arizumi T., Yamao K., Imai H., Sakamoto H., et al. Characterization of Pancreatic Tumors with Quantitative Perfusion Analysis in Contrast-Enhanced Harmonic Endoscopic Ultrasonography. Oncology. 2017;93((Suppl. S1)):55–60. doi: 10.1159/000481231.
    1. Yamashita Y., Tanioka K., Kawaji Y., Tamura T., Nuta J., Hatamaru K., Itonaga M., Yoshida T., Ida Y., Maekita T., et al. Utility of Contrast-Enhanced Harmonic Endoscopic Ultrasonography for Early Diagnosis of Small Pancreatic Cancer. Diagnostics. 2020;10:23. doi: 10.3390/diagnostics10010023.
    1. Omoto S., Kitano M., Fukasawa M., Ashida R., Kato H., Shiomi H., Sugimori K., Kanno A., Chiba Y., Takano S., et al. Tissue Harmonic versus Contrast-Enhanced Harmonic Endoscopic Ultrasonography for the diagnosis of Pancreatic Tumors: A Prospective Multicenter Study. Dig. Endosc. 2021 doi: 10.1111/den.13944. Early View.
    1. Yamashita Y., Shimokawa T., Napoléon B., Fusaroli P., Gincul R., Kudo M., Kitano M. Value of contrast-enhanced harmonic endoscopic ultrasonography with enhancement pattern for diagnosis of pancreatic cancer: A meta-analysis. Dig. Endosc. 2019;31:125–133. doi: 10.1111/den.13290.
    1. Yamamoto N., Kato H., Tomoda T., Matsumoto K., Sakakihara I., Noma Y., Horiguchi S., Harada R., Tsutsumi K., Hori K., et al. Contrast-enhanced harmonic endoscopic ultrasonography with time-intensity curve analysis for intraductal papillary mucinous neoplasms of the pancreas. Endoscopy. 2016;48:26–34. doi: 10.1055/s-0034-1393563.
    1. Kamata K., Kitano M., Omoto S., Kadosaka K., Miyata T., Yamao K., Imai H., Sakamoto H., Harwani Y., Chikugo T., et al. Contrast-enhanced harmonic endoscopic ultrasonography for differential diagnosis of pancreatic cysts. Endoscopy. 2016;48:35–41. doi: 10.1055/s-0034-1393564.
    1. Yamashita Y., Ueda K., Itonaga M., Yoshida T., Maeda H., Maekita T., Iguchi M., Tamai H., Ichinose M., Kato J. Usefulness of contrast-enhanced endoscopic sonography for discriminating mural nodules from mucous clots in intraductal papillary mucinous neoplasms: A single-center prospective study. J. Ultrasound. Med. 2013;32:61–68. doi: 10.7863/jum.2013.32.1.61.
    1. Fujita M., Itoi T., Ikeuchi N., Sofuni A., Tsuchiya T., Ishii K., Kamada K., Umeda J., Tanaka R., Tonozuka R., et al. Effectiveness of contrast-enhanced endoscopic ultrasound for detecting mural nodules in intraductal papillary mucinous neoplasm of the pancreas and for making therapeutic decisions. Endosc. Ultrasound. 2016;5:377–383.
    1. Harima H., Kaino S., Shinoda S., Kawano M., Suenaga S., Sakaida I. Differential diagnosis of benign and malignant branch duct intraductal papillary mucinous neoplasm using contrast-enhanced endoscopic ultrasonography. World J. Gastroenterol. 2015;21:6252–6260. doi: 10.3748/wjg.v21.i20.6252.
    1. Kamata K., Takenaka M., Kitano M., Omoto S., Miyata T., Minaga K., Yamao K., Imai H., Sakurai T., Nishida N., et al. Contrast-enhanced harmonic endoscopic ultrasonography for differential diagnosis of localized gallbladder lesions. Dig. Endosc. 2018;30:98–106. doi: 10.1111/den.12900.
    1. Imazu H., Mori N., Kanazawa K., Chiba M., Toyoizumi H., Torisu Y., Koyama S., Hino S., Ang T.L., Tajiri H. Contrast-enhanced harmonic endoscopic ultrasonography in the differential diagnosis of gallbladder wall thickening. Dig. Dis. Sci. 2014;59:1909–1916. doi: 10.1007/s10620-014-3115-5.
    1. Liang X., Jing X. Meta-analysis of contrast-enhanced ultrasound and contrast-enhanced harmonic endoscopic ultrasound for the diagnosis of gallbladder malignancy. BMC Med. Inform. Decis. Mak. 2020;20:235. doi: 10.1186/s12911-020-01252-5.
    1. Fusaroli P., Spada A., Mancino M.G., Caletti G. Contrast harmonic echo-endoscopic ultrasound improves accuracy in diagnosis of solid pancreatic masses. Clin. Gastroenterol. Hepatol. 2010;8:629–634. doi: 10.1016/j.cgh.2010.04.012.
    1. Hocke M., Ignee A., Dietrich C.F. Advanced endosonographic diagnostic tools for discrimination of focal chronic pancreatitis and pancreatic carcinoma—elastography, contrast enhanced high mechanical index (CEHMI) and low mechanical index (CELMI) endosonography in direct comparison. Z Gastroenterol. 2012;50:199–203. doi: 10.1055/s-0031-1281824.
    1. Yamashita Y., Kitano M., Ashida R. Value of endoscopy for early diagnosis of pancreatic carcinoma. Dig. Endosc. 2020;32:27–36. doi: 10.1111/den.13467.
    1. Kitano M., Yoshida T., Itnonaga M., Tamura T., Hatamaru K., Yamashita Y. Impact of endoscopic ultrasonography on diagnosis of pancreatic cancer. J. Gastroenterol. 2019;54:19–32. doi: 10.1007/s00535-018-1519-2.
    1. Yoshida T., Yamashita Y., Kitano M. Endoscopic Ultrasound for Early Diagnosis of Pancreatic Cancer. Diagnostics. 2019;9:81. doi: 10.3390/diagnostics9030081.
    1. Scientific Discussion. European Medicines Agency; Amsterdam, The Netherlands: 2004. CPMP/0053/01.
    1. Yamashita Y., Yoshikawa T., Kawaji Y., Tamura T., Hatamaru K., Itonaga M., Ida Y., Maekita T., Iguchi M., Murata S.I., et al. Novel endoscopic ultrasonography imaging technique for visualizing microcirculation without contrast enhancement in subepithelial lesions: Prospective study. Dig. Endosc. 2020;33 doi: 10.1111/den.13889.
    1. Jensen J.A. Estimation of Blood Velocities Using Ultrasound: A Signal Processing Approach. Cambridge University Press; New York, NY, USA: 1996.
    1. Lu R., Meng Y., Zhang Y., Zhao W., Wang X., Jin M., Guo R. Superb microvascular imaging (SMI) compared with conventional ultrasound for evaluating thyroid nodules. BMC Med. Imaging. 2017;28:65. doi: 10.1186/s12880-017-0241-5.
    1. Bakdik S., Arslan S., Oncu F., Durmaz M.S., Altunkeser A., Eryilmaz M.A., Unlu Y. Effectiveness of Superb Microvascular Imaging for the differentiation of intraductal breast lesions. Med. Ultrason. 2018;20:306–312. doi: 10.11152/mu-1433.
    1. Dubinsky T.J., Revels J., Wang S., Toia G., Sonneborn R., Hippe D.S., Erpelding T. Comparison of Superb Microvascular Imaging with Color Flow and Power Doppler Imaging of Small Hepatocellular Carcinomas. J. Ultrasound. Med. 2018;37:2915–2924. doi: 10.1002/jum.14654.
    1. Mao Y., Mu J., Zhao J., Zhao L., Xin X. The value of superb microvascular imaging in differentiating benign renal mass from malignant renal tumor: A retrospective study. Br. J. Radiol. 2018;91:20170601. doi: 10.1259/bjr.20170601.
    1. Sim J.K., Lee J.Y., Hong H.S. Differentiation Between Malignant and Benign Lymph Nodes: Role of Superb Microvascular Imaging in the Evaluation of Cervical Lymph Nodes. J. Ultrasound. Med. 2019;38:3025–3036. doi: 10.1002/jum.15010.
    1. Kuroda H., Abe T., Kakisaka K., Fujiwara Y., Yoshida Y., Miyasaka A., Ishida K., Ishida H., Sugai T., Takikawa Y. Visualizing the hepatic vascular architecture using superb microvascular imaging in patients with hepatitis C virus: A novel technique. World J. Gastroenterol. 2016;22:6057–6064. doi: 10.3748/wjg.v22.i26.6057.

Source: PubMed

3
Tilaa