New Imaging Markers of Clinical Outcome in Asymptomatic Patients with Severe Aortic Regurgitation

Radka Kočková, Hana Línková, Zuzana Hlubocká, Alena Pravečková, Andrea Polednová, Lucie Súkupová, Martin Bláha, Jiří Malý, Eva Honsová, David Sedmera, Martin Pěnička, Radka Kočková, Hana Línková, Zuzana Hlubocká, Alena Pravečková, Andrea Polednová, Lucie Súkupová, Martin Bláha, Jiří Malý, Eva Honsová, David Sedmera, Martin Pěnička

Abstract

Background: Determining the value of new imaging markers to predict aortic valve (AV) surgery in asymptomatic patients with severe aortic regurgitation (AR) in a prospective, observational, multicenter study. Methods: Consecutive patients with chronic severe AR were enrolled between 2015-2018. Baseline examination included echocardiography (ECHO) with 2- and 3-dimensional (2D and 3D) vena contracta area (VCA), and magnetic resonance imaging (MRI) with regurgitant volume (RV) and fraction (RF) analyzed in CoreLab. Results: The mean follow-up was 587 days (interquartile range (IQR) 296-901) in a total of 104 patients. Twenty patients underwent AV surgery. Baseline clinical and laboratory data did not differ between surgically and medically treated patients. Surgically treated patients had larger left ventricular (LV) dimension, end-diastolic volume (all p < 0.05), and the LV ejection fraction was similar. The surgical group showed higher prevalence of severe AR (70% vs. 40%, p = 0.02). Out of all imaging markers 3D VCA, MRI-derived RV and RF were identified as the strongest independent predictors of AV surgery (all p < 0.001). Conclusions: Parameters related to LV morphology and function showed moderate accuracy to identify patients in need of early AV surgery at the early stage of the disease. 3D ECHO-derived VCA and MRI-derived RV and RF showed high accuracy and excellent sensitivity to identify patients in need of early surgery.

Keywords: T1 mapping; aortic regurgitation; echocardiography; longitudinal strain; magnetic resonance imaging; vena contracta area.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Imaging markers. (A) Echocardiography derived three-dimensional vena contracta area; (B) echocardiography two-dimensional global longitudinal strain; (C) magnetic resonance—the left ventricular outflow tract (cine), red line—through-plane flow sequence slice position displayed on, Ao—aorta, LA—left atrium, LV—left ventricle, RV—right ventricle; (D) through-plane flow sequence at sinotubular junction level (STJ) of the aorta (displayed on (C)), the blue circle is a manually drawn region of interest where the blood flow and regurgitant volume and fraction are calculated. The exact copy of the region interest is in all four images, phantom—stationary phantom used for flow measurement correction; (E) flow-time curve based on (D)—blue line shows blood flow at STJ and red line show flow in stationary phantom; (F) native T1 mapping from modified Look–Locker Inversion recovery sequence (MOLLI) sequence, blue circle—a semi-automatically drawn region of interest within the blood pool, blue ellipsoid—a manually drawn region of interest within the myocardium at the level of the interventricular septum utilized for myocardial fibrosis calculation.
Figure 2
Figure 2
Receiver-operating characteristics curves of the MRI-derived: regurgitant volume (RV) and left ventricular end-diastolic volume index (LVEDVI); the 3D ECHO-derived: vena contracta area (VCA); 2D ECHO-derived: left ventricular end-systolic diameter (LVESD); RV and global longitudinal strain (GLS) to predict AV surgery.
Figure 3
Figure 3
(A) Kaplan–Meier curves for aortic valve surgery (AVR) in patients with 3D ECHO-derived VCA ≥30 mm2 vs. <30 mm2, (B) MRI-derived RV ≥45 mL vs. <45 mL; and (C) MRI-derived RF ≥34% vs. <34%.

References

    1. Baumgartner H., Falk V., Bax J.J., Bonis M., Hamm C., Holm P.J., Iung B., Lancelloti P., Lansac E., Rodriguez Munoz D., et al. ESC Scientific Document Group. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017;38:2739–2791. doi: 10.1093/eurheartj/ehx391.
    1. Nishimura R.A., Otto C.M., Bonow R.O., Carabello B.A., Erwin J.P., 3rd, Fleisher L.A., Jneid H., Mack M.J., McLeod C.J., O’Gara P.T., et al. 2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients with Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2017;70:252–289. doi: 10.1016/j.jacc.2017.03.011.
    1. Iung B., Baron G., Butchart E.G., Delahaye F., Gohlke-Barwolf C., Levang O.W., Tornos P., Vanoverschelde J.L., Vermeer F., Boersma E., et al. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur. Heart J. 2003;24:1231–1243. doi: 10.1016/S0195-668X(03)00201-X.
    1. Nkomo V.T., Gardin J.M., Skelton T.N., Gottdiener J.S., Scott C.G., Enriquez-Sarano M. Burden of valvular heart diseases: A population-based study. Lancet. 2006;368:1005–1011. doi: 10.1016/S0140-6736(06)69208-8.
    1. Klodas E., Enriquez-Sarano M., Tajik A.J., Mullany C.J., Bailey K.R., Seward J.B. Surgery for aortic regurgitation in women. Contrasting indications and outcomes compared with men. Circulation. 1996;94:2472–2478. doi: 10.1161/01.CIR.94.10.2472.
    1. de Meester C., Gerber B.L., Vancraeynest D., Pouleur A.C., Noirhomme P., Pasquet A., Gerber B.L., Vanoverschelde J.L. Do Guideline-Based Indications Result in an Outcome Penalty for Patients with Severe Aortic Regurgitation? JACC Cardiovasc. Imaging. 2019;12:2880. doi: 10.1016/j.jcmg.2018.11.022.
    1. Lancellotti P., Tribouilloy C., Hagendorff A., Popescu B.A., Edvardsen T., Pierard L.A., Badano L., Zamorano J.L., Scientific Document Committee of the European Association of Cardiovascular Imaging Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging. 2013;14:611–644. doi: 10.1093/ehjci/jet105.
    1. Mentias A., Feng K., Alashi A., Rodriguez L.L., Gillinov A.M., Johnston D.R., Sabik J.F., Svensson L.G., Grimm R.A., Griffin B.P., et al. Long-Term Outcomes in Patients with Aortic Regurgitation and Preserved Left Ventricular Ejection Fraction. J. Am. Coll. Cardiol. 2016;68:2144–2153. doi: 10.1016/j.jacc.2016.08.045.
    1. Messika-Zeitoun D., Detaint D., Leye M., Tribouilloy C., Michelena H.I., Pislaru S., Brochet E., Iung B., Vahanian A., Enriquez-Sarano M. Comparison of semiquantitative and quantitative assessment of severity of aortic regurgitation: clinical implications. J. Am. Soc. Echocardiogr. 2011;24:1246–1252. doi: 10.1016/j.echo.2011.08.009.
    1. Zoghbi W.A., Adams D., Bonow R.O., Enriquez-Sarano M., Foster E., Grayburn P.A., Hahn R.T., Han Y., Hung J., Lang R.M., et al. Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiog. 2017;30:303–371. doi: 10.1016/j.echo.2017.01.007.
    1. Krayenbuehl H.P., Hess O.M., Monrad E.S., Schneider J., Mall G., Turina M. Left ventricular myocardial structure in aortic valve disease before, intermediate, and late after aortic valve replacement. Circulation. 1989;79:744–755. doi: 10.1161/01.CIR.79.4.744.
    1. Pizarro R., Bazzino O.O., Oberti P.F., Falconi M.L., Arias A.M., Krauss J.G., Cagide A.M. Prospective validation of the prognostic usefulness of B-type natriuretic peptide in asymptomatic patients with chronic severe aortic regurgitation. J. Am. Coll. Cardiol. 2011;58:1705–1714. doi: 10.1016/j.jacc.2011.07.016.
    1. Ewe S.H., Haeck M.L., Ng A.C., Witkowski T.G., Auger D., Leong D.P., Abate E., Ajmone Marsan N., Holman E.R., Schalij M.J., et al. Detection of subtle left ventricular systolic dysfunction in patients with significant aortic regurgitation and preserved left ventricular ejection fraction: speckle tracking echocardiographic analysis. Eur. Heart J. Cardiovasc. Imaging. 2015;16:992–999. doi: 10.1093/ehjci/jev019.
    1. Kockova R., Kacer P., Pirk J., Maly J., Sukupova L., Sikula V., Kotrc M., Barciakova L., Honsova E., Maly M., et al. Native T1 Relaxation Time and Extracellular Volume Fraction as Accurate Markers of Diffuse Myocardial Fibrosis in Heart Valve Disease- Comparison with Targeted Left Ventricular Myocardial Biopsy. Circ. J. 2016;80:1202–1209. doi: 10.1253/circj.CJ-15-1309.
    1. Kusunose K., Agarwal S., Marwick T.H., Griffin B.P., Popovic Z.B. Decision making in asymptomatic aortic regurgitation in the era of guidelines: incremental values of resting and exercise cardiac dysfunction. Circ. Cardiovasc. Imaging. 2014;7:352–362. doi: 10.1161/CIRCIMAGING.113.001177.
    1. Lee J.C., Branch K.R., Hamilton-Craig C., Krieger E.V. Evaluation of aortic regurgitation with cardiac magnetic resonance imaging: A systematic review. Heart. 2018;104:103–110. doi: 10.1136/heartjnl-2016-310819.
    1. Lee J.K.T., Franzone A., Lanz J., Siontis G.C.M., Stortecky S., Gräni C., Roost E., Windecker S., Pilgrim T. Early Detection of Subclinical Myocardial Damage in Chronic Aortic Regurgitation and Strategies for Timely Treatment of Asymptomatic Patients. Circulation. 2018;137:184–196. doi: 10.1161/CIRCULATIONAHA.117.029858.
    1. Manganaro R., Marchetta S., Dulgheru R., Ilardi F., Sugimoto T., Robinet S., Cimino S., Go Y.Y., Bernard A., Kacharava G., et al. Echocardiographic reference ranges for normal non-invasive myocardial work indices: Results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging. 2019;20:582–590. doi: 10.1093/ehjci/jey188.
    1. Myerson S.G., d’Arcy J., Mohiaddin R., Greenwood J.P., Karamitsos T.D., Francis J.M., Banning A.P., Christiansen J.P., Neubauer S. Aortic regurgitation quantification using cardiovascular magnetic resonance: Association with clinical outcome. Circulation. 2012;126:1452–1460. doi: 10.1161/CIRCULATIONAHA.111.083600.
    1. Vecera J., Bartunek J., Vanderheyden M., Kotrc M., Kockova R., Penicka M. Three-dimensional echocardiography-derived vena contracta area at rest and its increase during exercise predicts clinical outcome in mild-moderate functional mitral regurgitation. Circ. J. 2014;78:2741–2749. doi: 10.1253/circj.CJ-14-0183.
    1. Lang R.M., Badano L.P., Mor-Avi V., Afilalo J., Armstrong A., Emande L., Flachskampf F.A., Foster E., Goldstein S.A., Kuznetsova T., et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015;28:1–39. doi: 10.1016/j.echo.2014.10.003.
    1. Russell K., Eriksen M., Aaberge L., Wilhelmsen N., Skulstad H., Remme E.W., Haugaa K.H., Opdahl A., Fjeld J.G., Gjesdal O., et al. A novel clinical method for quantification of regional left ventricular pressure-strain loop area: A non-invasive index of myocardial work. Eur. Heart J. 2012;33:724–733. doi: 10.1093/eurheartj/ehs016.
    1. Messroghli D.R., Radjenovic A., Kozerke S., Higgins D.M., Sivananthan M.U., Ridgway J.P. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn. Reson. Med. 2004;52:141–146. doi: 10.1002/mrm.20110.
    1. Chatzimavroudis G.P., Walker P.G., Oshinski J.N., Franch R.H., Pettigrew R.I., Yoganathan A.P. Slice location dependence of aortic regurgitation measurements with MR phase velocity mapping. Magn. Reson. Med. 1997;37:545–551. doi: 10.1002/mrm.1910370412.
    1. Detaint D., Messika-Zeitoun D., Maalouf J., Tribouilloy C., Mahoney D.W., Tajik A.J., Enriquez-Sarano M. Quantitative echocardiographic determinants of clinical outcome in asymptomatic patients with aortic regurgitation: A prospective study. JACC Cardiovasc. Imaging. 2008;1:1–11. doi: 10.1016/j.jcmg.2007.10.008.
    1. Messroghli D.R., Moon J.C., Ferreira V.M., Frosse-Wortmann L., He T., Kellman P., Mascherbauer J., Nezafat R., Salerno M., Schelbert E.B., et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI) J. Cardiovasc. Magn. Reson. 2017;19:75. doi: 10.1186/s12968-017-0389-8.
    1. Meckel C.R., Wilson J.E., Sears T.D., Rogers J.G., Goaley T.J., McManus B.M. Myocardial fibrosis in endomyocardial biopsy specimens: Do different bioptomes affect estimation? Am. J. Cardiovasc. Pathol. 1989;2:309–313.
    1. Tanaka M., Fujiwara H., Onodera T., Wu D.J., Hamashima Y., Kawai C. Quantitative analysis of myocardial fibrosis in normals, hypertensive hearts, and hypertrophic cardiomyopathy. Br. Heart J. 1986;55:575–581. doi: 10.1136/hrt.55.6.575.
    1. Abudiab M.M., Chao C.J., Liu S., Naqvi T.Z. Quantitation of valve regurgitation severity by three-dimensional vena contracta area is superior to flow convergence method of quantitation on transesophageal echocardiography. Echocardiography. 2017;34:992–1001. doi: 10.1111/echo.13549.
    1. Sato H., Ohta T., Hiroe K., Okada S., Shimizu K., Murakami R., Tanabe K. Severity of aortic regurgitation assessed by area of vena contracta: A clinical two-dimensional and three-dimensional color Doppler imaging study. Cardiovasc. Ultrasound. 2015;5:13–24. doi: 10.1186/s12947-015-0016-5.
    1. Zeng X., Levine R.A., Hua L., Morris E.L., Kang Y., Flaherty M., Morgan N.V., Hung J. Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color Doppler 3D echocardiography. Circ. Cardiovasc. Imaging. 2011;4:506–513. doi: 10.1161/CIRCIMAGING.110.961649.

Source: PubMed

3
Tilaa