Estimating Vitamin C Status in Critically Ill Patients with a Novel Point-of-Care Oxidation-Reduction Potential Measurement

Sander Rozemeijer, Angélique M E Spoelstra-de Man, Sophie Coenen, Bob Smit, Paul W G Elbers, Harm-Jan de Grooth, Armand R J Girbes, Heleen M Oudemans-van Straaten, Sander Rozemeijer, Angélique M E Spoelstra-de Man, Sophie Coenen, Bob Smit, Paul W G Elbers, Harm-Jan de Grooth, Armand R J Girbes, Heleen M Oudemans-van Straaten

Abstract

Vitamin C deficiency is common in critically ill patients. Vitamin C, the most important antioxidant, is likely consumed during oxidative stress and deficiency is associated with organ dysfunction and mortality. Assessment of vitamin C status may be important to identify patients who might benefit from vitamin C administration. Up to now, vitamin C concentrations are not available in daily clinical practice. Recently, a point-of-care device has been developed that measures the static oxidation-reduction potential (sORP), reflecting oxidative stress, and antioxidant capacity (AOC). The aim of this study was to determine whether plasma vitamin C concentrations were associated with plasma sORP and AOC. Plasma vitamin C concentration, sORP and AOC were measured in three groups: healthy volunteers, critically ill patients, and critically ill patients receiving 2- or 10-g vitamin C infusion. Its association was analyzed using regression models and by assessment of concordance. We measured 211 samples obtained from 103 subjects. Vitamin C concentrations were negatively associated with sORP (R2 = 0.816) and positively associated with AOC (R2 = 0.842). A high concordance of 94-100% was found between vitamin C concentration and sORP/AOC. Thus, plasma vitamin C concentrations are strongly associated with plasma sORP and AOC, as measured with a novel point-of-care device. Therefore, measuring sORP and AOC at the bedside has the potential to identify and monitor patients with oxidative stress and vitamin C deficiency.

Keywords: antioxidant capacity; ascorbate; ascorbic acid; oxidation-reduction potential; oxidative stress; point-of-care device; reactive oxygen species; vitamin C deficiency.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Graphic representation of the methodological process.
Figure 2
Figure 2
Flowchart of included subjects and sample measurements.
Figure 3
Figure 3
Boxplots of plasma vitamin C concentrations (A), static oxidation reduction potential (sORP) (B) and antioxidant capacity (AOC) (C) in the vitamin C status study at day 1 and 3. The dashed line (A) represents the lower limit of normal plasma vitamin C concentrations (23 µmol/L). sORP and AOC were measured in non-acidified samples.
Figure 4
Figure 4
Boxplots of plasma vitamin C concentrations (A) and static oxidation reduction potential (sORP) (B) in the pharmacokinetic study at five different time points (hours). The dashed line (A) represents the lower limit of normal plasma vitamin C concentrations (23 µmol/L). Asterisks represent significant differences at p < 0.05. Vitamin C concentrations at T24 and T48 are trough concentrations. T72 represents a wash-out phase sample. sORP was measured in acidified samples.
Figure 5
Figure 5
Scatter plot of the association between plasma vitamin C concentration and concomitant static oxidation reduction potential (sORP) and antioxidant capacity (AOC) in the vitamin C status study (A+B) and pharmacokinetic study (C). A: sORP = −26.89 ln(plasma vitamin C concentration) + 198.69; B: AOC = 0.199 × e0.039(plasma vitamin C concentration); C: sORP = −21.74 ln(plasma vitamin C concentration) + 523.46.
Figure 6
Figure 6
Four-quadrant plots demonstrating the concordance between the changes in plasma vitamin C concentration and changes in sORP and AOC between day 1 and day 3 in the vitamin C status study (A and B respectively), and changes in sORP per day in the pharmacokinetic study (C).

References

    1. Borrelli E., Roux-Lombard P., Grau G.E., Girardin E., Ricou B., Dayer J., Suter P.M. Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Crit. Care Med. 1996;24:392–397. doi: 10.1097/00003246-199603000-00006.
    1. Grooth H.J., Spoelstra-de Man A.M.E., Oudemans-van Straaten H.M. Early plasma vitamin c concentration, organ dysfunction and icu mortality. Intensive Care Med. 2014;40(Suppl. 1):S199.
    1. May J.M., Harrison F.E. Role of vitamin c in the function of the vascular endothelium. Antioxid. Redox Signal. 2013;19:2068–2083. doi: 10.1089/ars.2013.5205.
    1. Frei B., England L., Ames B.N. Ascorbate is an outstanding antioxidant in human blood plasma. Proc. Natl. Acad. Sci. USA. 1989;86:6377–6381. doi: 10.1073/pnas.86.16.6377.
    1. Frei B., Stocker R., England L., Ames B.N. Ascorbate: The most effective antioxidant in human plasma. Adv. Exp. Med. Biol. 1990;264:155–163.
    1. May J.M. Vitamin c transport and its role in the central nervous system. Subcell Biochem. 2012;56:85–103.
    1. Carr A.C., Maggini S. Vitamin c and immune function. Nutrients. 2017;9:1211. doi: 10.3390/nu9111211.
    1. Padayatty S.J., Levine M. Vitamin C: The known and the unknown and goldilocks. Oral. Dis. 2016;22:463–493. doi: 10.1111/odi.12446.
    1. Oudemans-van Straaten H.M., Spoelstra-de Man A.M., de Waard M.C. Vitamin c revisited. Crit. Care. 2014;18:460. doi: 10.1186/s13054-014-0460-x.
    1. Carr A.C., Rosengrave P.C., Bayer S., Chambers S., Mehrtens J., Shaw G.M. Hypovitaminosis c and vitamin c deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit. Care. 2017;21:300. doi: 10.1186/s13054-017-1891-y.
    1. Marik P.E., Hooper M.H. Doctor-your septic patients have scurvy! Crit. Care. 2018;22:23. doi: 10.1186/s13054-018-1950-z.
    1. Spoelstra-de Man A.M.E., Elbers P.W.G., Oudemans-van Straaten H.M. Making sense of early high-dose intravenous vitamin c in ischemia/reperfusion injury. Crit. Care. 2018;22:70. doi: 10.1186/s13054-018-1996-y.
    1. Spoelstra-de Man A.M.E., Elbers P.W.G., Oudemans-Van Straaten H.M. Vitamin C: Should we supplement? Curr. Opin. Crit. Care. 2018;24:248–255. doi: 10.1097/MCC.0000000000000510.
    1. Rael L.T., Bar-Or R., Kelly M.T., Carrick M.M., Bar-Or D. Assessment of oxidative stress in patients with an isolated traumatic brain injury using disposable electrochemical test strips. Electroanalysis. 2015;27:2567–2573. doi: 10.1002/elan.201500178.
    1. Polson D., Villalba N., Freeman K. Optimization of a diagnostic platform for oxidation-reduction potential (orp) measurement in human plasma. Redox. Rep. 2018;23:125–129. doi: 10.1080/13510002.2018.1456000.
    1. Rael L.T. Redoxsys™ Orp Scientific Data Synopsis. Luoxis Diagnostics, Inc.; Englewood, CO, USA: 2014.
    1. Bobe G., Cobb T.J., Leonard S.W., Aponso S., Bahro C.B., Koley D., Mah E., Bruno R.S., Traber M.G. Increased static and decreased capacity oxidation-reduction potentials in plasma are predictive of metabolic syndrome. Redox. Biol. 2017;12:121–128. doi: 10.1016/j.redox.2017.02.010.
    1. Heldmaier K., Stoppe C., Goetzenich A., Foldenauer A.C., Zayat R., Breuer T., Schalte G. Oxidation-reduction potential in patients undergoing transcatheter or surgical aortic valve replacement. Biomed. Res. Int. 2018;2018:8469383. doi: 10.1155/2018/8469383.
    1. Rael L.T., Bar-Or R., Salottolo K., Mains C.W., Slone D.S., Offner P.J., Bar-Or D. Injury severity and serum amyloid a correlate with plasma oxidation-reduction potential in multi-trauma patients: A retrospective analysis. Scand. J. Trauma Resusc. Emerg. Med. 2009;17:57. doi: 10.1186/1757-7241-17-57.
    1. Bjugstad K.B., Rael L.T., Levy S., Carrick M., Mains C.W., Slone D.S., Bar-Or D. Oxidation-reduction potential as a biomarker for severity and acute outcome in traumatic brain injury. Oxid. Med. Cell. Longev. 2016:6974257. doi: 10.1155/2016/6974257.
    1. Bjugstad K.B., Lalama J., Rael L.T., Salottolo K., Dauber I., Bar-Or D. Poor acute outcome in congestive heart failure is associated with increases in the plasma static oxidation-reduction potentials (sorp) in men but not in women. Redox. Rep. 2017;22:534–541. doi: 10.1080/13510002.2017.1369644.
    1. Rael L.T., Bar-Or R., Mains C.W., Slone D.S., Levy A.S., Bar-Or D. Plasma oxidation-reduction potential and protein oxidation in traumatic brain injury. J. Neurotrauma. 2009;26:1203–1211. doi: 10.1089/neu.2008.0816.
    1. Bar-Or D., Bar-Or R., Rael L.T., Brody E.N. Oxidative stress in severe acute illness. Redox. Biol. 2015;4:340–345. doi: 10.1016/j.redox.2015.01.006.
    1. Rael L.T., Bar-Or R., Aumann R.M., Slone D.S., Mains C.W., Bar-Or D. Oxidation-reduction potential and paraoxonase-arylesterase activity in trauma patients. Biochem. Biophys. Res. Commun. 2007;361:561–565. doi: 10.1016/j.bbrc.2007.07.078.
    1. Spanidis Y., Goutzourelas N., Stagos D., Kolyva A.S., Gogos C.A., Bar-Or D., Kouretas D. Assessment of oxidative stress in septic and obese patients using markers of oxidation-reduction potential. Athens Greece. 2015;29:595–600.
    1. De Grooth H.J., Manubulu-Choo W.P., Zandvliet A.S., Spoelstra-de Man A.M.E., Girbes A.R., Swart E.L., Oudemans-van Straaten H.M. Vitamin-c pharmacokinetics in critically ill patients: A randomized trial of four intravenous regimens. Chest. 2018;153:1368–1377. doi: 10.1016/j.chest.2018.02.025.
    1. Zhi L., Liang J., Hu X., Xu J., Yu C., Shao H., Pan X., Han C. The reliability of clinical dynamic monitoring of redox status using a new redox potential (orp) determination method. Redox. Rep. 2013;18:63–70. doi: 10.1179/1351000213Y.0000000042.
    1. Winkler B.S. Unequivocal evidence in support of the nonenzymatic redox coupling between glutathione/glutathione disulfide and ascorbic acid/dehydroascorbic acid. Biochim. Biophys. Acta BBA Gen. Subj. 1992;1117:287–290. doi: 10.1016/0304-4165(92)90026-Q.
    1. Buettner G.R., Jurkiewicz B.A. Catalytic metals, ascorbate and free radicals: Combinations to avoid. Radiat. Res. 1996;145:532–541. doi: 10.2307/3579271.
    1. Buettner G.R. The pecking order of free radicals and antioxidants: Lipid peroxidation, α-tocopherol, and ascorbate. Archives Biochem. Biophysics. 1993;300:535–543. doi: 10.1006/abbi.1993.1074.
    1. Gao X., Curhan G., Forman J.P., Ascherio A., Choi H.K. Vitamin c intake and serum uric acid concentration in men. J. Rheumatol. 2008;35:1853–1858.
    1. Evans R.M., Currie L., Campbell A. The distribution of ascorbic acid between various cellular components of blood, in normal individuals, and its relation to the plasma concentration. Br. J. Nutr. 1982;47:473–482. doi: 10.1079/BJN19820059.
    1. Carr A.C., Bozonet S.M., Pullar J.M., Simcock J.W., Vissers M.C. Human skeletal muscle ascorbate is highly responsive to changes in vitamin c intake and plasma concentrations. Am. J. Clin. Nutr. 2013;97:800–807. doi: 10.3945/ajcn.112.053207.
    1. Margolis S.A., Duewer D.L. Measurement of ascorbic acid in human plasma and serum: Stability, intralaboratory repeatability, and interlaboratory reproducibility. Clin. Chem. 1996;42:1257–1262.
    1. Comstock G.W., Norkus E.P., Hoffman S.C., Xu M.W., Helzlsouer K.J. Stability of ascorbic acid, carotenoids, retinol, and tocopherols in plasma stored at -70 degrees c for 4 years. Cancer Epidemiol. Biomark. Prev. 1995;4:505–507.
    1. Karlsen A., Blomhoff R., Gundersen T.E. Stability of whole blood and plasma ascorbic acid. Eur. J. Clin. Nutr. 2007;61:1233–1236. doi: 10.1038/sj.ejcn.1602655.

Source: PubMed

3
Tilaa