Computerized Dual-Task Testing of Gait Visuomotor and Cognitive Functions in Parkinson's Disease: Test-Retest Reliability and Validity

Mayank Bhatt, Bhuvan Mahana, Ji Hyun Ko, Tiffany A Kolesar, Anuprita Kanitkar, Tony Szturm, Mayank Bhatt, Bhuvan Mahana, Ji Hyun Ko, Tiffany A Kolesar, Anuprita Kanitkar, Tony Szturm

Abstract

Background: Mobility and cognitive impairments in Parkinson's disease (PD) often coexist and are prognostic of adverse health events. Consequently, assessment and training that simultaneously address both gait function and cognition are important to consider in rehabilitation and promotion of healthy aging. For this purpose, a computer game-based rehabilitation treadmill platform (GRP) was developed for dual-task (DT) assessment and training.

Objective: The first objective was to establish the test-retest reliability of the GRP assessment protocol for DT gait, visuomotor and executive cognitive function in PD patients. The second objective was to examine the effect of task condition [single task (ST) vs. DT] and disease severity (stage 2 vs. stage 3) on gait, visuomotor and cognitive function.

Methods: Thirty individuals aged 55 to 70 years, diagnosed with PD; 15 each at Hoehn and Yahr scale stage 2 (PD-2) and 3 (PD-3) performed a series of computerized visuomotor and cognitive game tasks while sitting (ST) and during treadmill walking (DT). A treadmill instrumented with a pressure mat was used to record center of foot pressure and compute the average and coefficient of variation (COV) of step time, step length, and drift during 1-min, speed-controlled intervals. Visuomotor and cognitive game performance measures were quantified using custom software. Testing was conducted on two occasions, 1 week apart.

Results: With few exceptions, the assessment protocol showed moderate to high intraclass correlation coefficient (ICC) values under both ST and DT conditions for the spatio-temporal gait measures (average and COV), as well as the visuomotor tracking and cognitive game performance measures. A significant decline in gait, visuomotor, and cognitive game performance measures was observed during DT compared to ST conditions, and in the PD-3 compared to PD-2 groups.

Conclusion: The high to moderate ICC values along with the lack of systematic errors in the measures indicate that this tool has the ability to repeatedly record reliable DT interference (DTI) effects over time. The use of interactive digital media provides a flexible method to produce and evaluate DTI for a wide range of executive cognitive activities. This also proves to be a sensitive tool for tracking disease progression.

Clinical trial registration: www.ClinicalTrials.gov, identifier NCT03232996.

Keywords: Parkinson’s disease; cognitive performance; dual-task performance; intra-class correlation coefficient; spatiotemporal gait variables; treadmill walking.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Bhatt, Mahana, Ko, Kolesar, Kanitkar and Szturm.

Figures

FIGURE 1
FIGURE 1
Illustration of the treadmill platform and experimental set-up; (A) the motion mouse is shown attached to the head via a baseball cap. (D) Participant is walking on the instrumented treadmill while viewing a computer monitor. Head rotation (via motion mouse) is used to interact with the visuospatial cognitive task. (B,C) present snap shots of the VMT and VCG. (E) Presents synchronous plots of the target cursor motion and user movement trajectories (head rotation) for a typical VMT task. Maxima are the left most position and minima the right most position. (F) Presents the trajectory for one game movement response from target appearance to target disappearance. (G) Presents overlay trajectories of all game movement responses for one game session. Parts of Figure 1 have previously been published in Szturm et al. (2017, 2021).
FIGURE 2
FIGURE 2
Plots and values of group means and in brackets standard error of mean (SEM) for the gait variables by task condition and disease stage.
FIGURE 3
FIGURE 3
Plots and values of group means and in brackets standard error of mean (SEM) for the VMT and VCG outcome measures by task condition and disease stage.

References

    1. Ahmadi S., Sepehri N., Wu C., Szturm T. (2019). Comparison of selected measures of gait stability derived from center of pressure displacement signal during single and dual-task treadmill walking. Med. Eng. Phys. 74 49–57. 10.1016/j.medengphy.2019.07.018
    1. Ahmadi S., Wu C., Sepehri N., Kantikar A., Nankar M., Szturm T. (2018). The effects of aging and dual tasking on human gait complexity during treadmill walking: a comparative study using quantized dynamical entropy and sample entropy. J. Biomech. Eng. 140:011006.
    1. Al-Yahya E., Dawes H., Smith L., Dennis A., Howells K., Cockburn J. (2011). Cognitive motor interference while walking: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 35 715–728. 10.1016/j.neubiorev.2010.08.008
    1. Battisto J., Echt K. V., Wolf S. L., Weiss P., Hackney M. E. (2018). The body position spatial task, a test of whole-body spatial cognition: comparison between adults with and without Parkinson disease. Neurorehabil. Neural Repair 32 961–975. 10.1177/1545968318804419
    1. Bauby C. E., Kuo A. D. (2000). Active control of lateral balance in human walking. J. Biomech. 33 1433–1440. 10.1016/s0021-9290(00)00101-9
    1. Bruijn S. M., van Dieen J. H., Meijer O. G., Beek P. J. (2009). Statistical precision and sensitivity of measures of dynamic gait stability. J. Neurosci. Methods 178 327–333. 10.1016/j.jneumeth.2008.12.015
    1. Callisaya M. L., Blizzard L., Schmidt M. D., Martin K. L., McGinley J. L., Sanders L. M., et al. (2011). Gait, gait variability and the risk of multiple incident falls in older people: a population-based study. Age Ageing 40 481–487. 10.1093/ageing/afr055
    1. Chung M. J., Wang M. J. (2010). The change of gait parameters during walking at different percentage of preferred walking speed for healthy adults aged 20-60 years. Gait Posture 31 131–135. 10.1016/j.gaitpost.2009.09.013
    1. Cole M. H., Sweeney M., Conway Z. J., Blackmore T., Silburn P. A. (2017). Imposed faster and slower walking speeds influence gait stability differently in Parkinson fallers. Arch. Phys. Med. Rehabil. 98 639–648. 10.1016/j.apmr.2016.11.008
    1. Creaby M. W., Cole M. H. (2018). Gait characteristics and falls in Parkinson’s disease: a systematic review and meta-analysis. Parkinsonism Relat. Disord. 57 1–8. 10.1016/j.parkreldis.2018.07.008
    1. Crockett R. A., Hsu C. L., Best J. R., Liu-Ambrose T. (2017). Resting state default mode network connectivity, dual task performance, gait speed, and postural sway in older adults with mild cognitive impairment. Front. Aging Neurosci. 9:423. 10.3389/fnagi.2017.00423
    1. Dirnberger G., Jahanshahi M. (2013). Executive dysfunction in Parkinson’s disease: a review. J. Neuropsychol. 7 193–224. 10.1097/wnp.0b013e3181dd4fdb
    1. Duysens J., Duysens J. P., Bastiaanse C. M., van Sprundel M., Schubert M., Smits-Engelsman B. C. (2008). How trunk turns affect locomotion when you are not looking where you go. Hum. Mov. Sci. 27 759–770. 10.1016/j.humov.2008.04.004
    1. Fahn S., Elton R. Members of the UPDRS Development Committee (1987). “Unified Parkinson’s disease rating scale,” in Recent Developments in Parkinson’s Disease, eds Fahn S., Marsden C., Goldstein M., Calne D. (Florham Park, NJ: Macmillan Health Care Information; ), 153–163.
    1. Fraser S. A., Dupuy O., Pouliot P., Lesage F., Bherer L. (2016). Comparable cerebral oxygenation patterns in younger and older adults during dual-task walking with increasing load. Front. Aging Neurosci. 8:240. 10.3389/fnagi.2016.00240
    1. Frenkel-Toledo S., Giladi N., Peretz C., Herman T., Gruendlinger L., Hausdorff J. M. (2005). Effect of gait speed on gait rhythmicity in Parkinson’s disease: variability of stride time and swing time respond differently. J. Neuroeng. Rehabil. 2:23.
    1. Galna B., Lord S., Rochester L. (2013). Is gait variability reliable in older adults and Parkinson’s disease? Towards an optimal testing protocol. Gait Posture 37 580–585. 10.1016/j.gaitpost.2012.09.025
    1. Gilat M., Bell P. T., Ehgoetz Martens K. A., Georgiades M. J., Hall J. M., Walton C. C., et al. (2017). Dopamine depletion impairs gait automaticity by altering cortico-striatal and cerebellar processing in Parkinson’s disease. Neuroimage 152 207–220. 10.1016/j.neuroimage.2017.02.073
    1. Haley S. M., Fragala-Pinkham M. A. (2006). Interpreting change scores of tests and measures used in physical therapy. Phys. Ther. 86 735–743. 10.1093/ptj/86.5.735
    1. Hass C. J., Malczak P., Nocera J., Stegemöller E. L., Shukala A., Malaty I., et al. (2012). Quantitative normative gait data in a large cohort of ambulatory persons with Parkinson’s disease. PLoS One 7:e42337. 10.1371/journal.pone.0042337
    1. Heinzel S., Maechtel M., Hasmann S. E., Hobert M. A., Heger T., Berg D., et al. (2016). Motor dual-tasking deficits predict falls in Parkinson’s disease: a prospective study. Parkinsonism Relat. Disord. 26 73–77. 10.1016/j.parkreldis.2016.03.007
    1. Hollman J. H., Childs K. B., McNeil M. L., Mueller A. C., Quilter C. M., Youdas J. W. (2010). Number of strides required for reliable measurements of pace, rhythm and variability parameters of gait during normal and dual task walking in older individuals. Gait Posture 32 23–28. 10.1016/j.gaitpost.2010.02.017
    1. Hollman J. H., Watkins M. K., Imhoff A. C., Braun C. E., Akervik K. A., Ness D. K. (2016). A comparison of variability in spatiotemporal gait parameters between treadmill and overground walking conditions. Gait Posture 43 204–209. 10.1016/j.gaitpost.2015.09.024
    1. Holtzer R., Mahoney J. R., Izzetoglu M., Wang C., England S., Verghese J. (2015). Online fronto-cortical control of simple and attention-demanding locomotion in humans. Neuroimage 112 152–159. 10.1016/j.neuroimage.2015.03.002
    1. Hughes A. J., Daniel S. E., Kilford L., Lees A. J. (1992). Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55 181–184. 10.1136/jnnp.55.3.181
    1. Jordan K., Challis J. H., Newell K. M. (2007). Walking speed influences on gait cycle variability. Gait Posture 26 128–134. 10.1016/j.gaitpost.2006.08.010
    1. Kang G. A., Bronstein J. M., Masterman D. L., Redelings M., Crum J. A., Ritz B. (2005). Clinical characteristics in early Parkinson’s disease in a central California population-based study. Mov. Disord. 20 1133–1142. 10.1002/mds.20513
    1. Keene D. J., Moe-Nilssen R., Lamb S. E. (2016). The application of multilevel modelling to account for the influence of walking speed in gait analysis. Gait Posture 43 216–219. 10.1016/j.gaitpost.2015.09.026
    1. Klencklen G., Després O., Dufour A. (2012). What do we know about aging and spatial cognition? Reviews and perspectives. Ageing Res. Rev. 11 123–135. 10.1016/j.arr.2011.10.001
    1. Koo T. K., Li M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15 155–163. 10.1016/j.jcm.2016.02.012
    1. Lally H., Hart A. R., Bay A. A., Kim C., Wolf S. L., Hackney M. E. (2020). Association between motor subtype and visuospatial and executive function in mild-moderate Parkinson disease. Arch. Phys. Med. Rehabil. 101 1580–1589. 10.1016/j.apmr.2020.05.018
    1. Lexell J. E., Downham D. Y. (2005). How to assess the reliability of measurements in rehabilitation. Am. J. Phys. Med. Rehabil. 84 719–723. 10.1097/01.phm.0000176452.17771.20
    1. Liu Y.-C., Yang Y.-R., Yeh N.-C., Ku P.-H., Lu C.-F., Wang R.-Y. (2021). Cognitive and motor dual task on multi-area brain activation and gait performance in individuals with Parkinson’s disease. Res. Sq. [Preprint].
    1. Lord S., Galna B., Yarnall A. J., Morris R., Coleman S., Burn D., et al. (2017). Natural history of falls in an incident cohort of Parkinson’s disease: early evolution, risk and protective features. J. Neurol. 264 2268–2276. 10.1007/s00415-017-8620-y
    1. Mahana B., Bhatt M., Gupta A., Hobson D. E., Ko J. H., Szturm T. (2021). Does use of dual-task cognitive game-assisted treadmill system improve balance and gait in Parkinson’s disease? A feasibility study. Body Brain Cogn. J. 9 23–33.
    1. Maidan I., Nieuwhof F., Bernad-Elazari H., Reelick M. F., Bloem B. R., Giladi N., et al. (2016). The role of the frontal lobe in complex walking among patients with Parkinson’s disease and healthy older adults: an fNIRS study. Neurorehabil. Neural Repair 30 963–971. 10.1177/1545968316650426
    1. Mak M. K., Wong A., Pang M. Y. (2014). Impaired executive function can predict recurrent falls in Parkinson’s disease. Arch. Phys. Med. Rehabil. 95 2390–2395. 10.1016/j.apmr.2014.08.006
    1. Messick S. (1995). Standards of validity and the validity standards in performance assessment. Educ. Meas. Issues Pract. 14 5–8. 10.1111/j.1745-3992.1995.tb00881.x
    1. Monchi O., Petrides M., Doyon J., Postuma R. B., Worsley K., Dagher A. (2004). Neural bases of set-shifting deficits in Parkinson’s disease. J. Neurosci. 24 702–710. 10.1523/jneurosci.4860-03.2004
    1. Monchi O., Petrides M., Petre V., Worsley K., Dagher A. (2001). Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J. Neurosci. 21 7733–7741. 10.1523/jneurosci.21-19-07733.2001
    1. Montero-Odasso M., Almeida Q. J., Burhan A. M., Camicioli R., Doyon J., Fraser S., et al. (2018). SYNERGIC TRIAL (SYNchronizing exercises, remedies in gait and cognition) a multi-centre randomized controlled double blind trial to improve gait and cognition in mild cognitive impairment. BMC Geriatr. 18:93. 10.1186/s12877-018-0782-7
    1. Montero-Odasso M., Muir S. W., Speechley M. (2012). Dual-task complexity affects gait in people with mild cognitive impairment: the interplay between gait variability, dual tasking, and risk of falls. Arch. Phys. Med. Rehabil. 93 293–299. 10.1016/j.apmr.2011.08.026
    1. Nankar M., Szturm T., Marotta J., Shay B., Beauchet O., Allali G. (2017). The interacting effects of treadmill walking and different types of visuospatial cognitive task: discriminating dual task and age effects. Arch. Gerontol. Geriatr. 73 50–59. 10.1016/j.archger.2017.07.013
    1. Nasreddine Z. S., Phillips N. A., Bedirian V., Charbonneau S., Whitehead V., Collin I., et al. (2005). The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53 695–699. 10.1111/j.1532-5415.2005.53221.x
    1. O’Connor S. M., Kuo A. D. (2009). Direction-dependent control of balance during walking and standing. J. Neurophysiol. 102 1411–1419. 10.1152/jn.00131.2009
    1. Olchik M. R., Ghisi M., Freiry A. M., Ayres A., Schuh A. F. S., Rieder C. R. M., et al. (2017). Comparison trail making test between individuals with Parkinson’s disease and health controls: suggestions of cutoff point. Psychol. Neurosci. 10 77–82. 10.1037/pne0000076
    1. Paul S. S., Sherrington C., Canning C. G., Fung V. S., Close J. C., Lord S. R. (2014). The relative contribution of physical and cognitive fall risk factors in people with Parkinson’s disease: a large prospective cohort study. Neurorehabil. Neural Repair 28 282–290. 10.1177/1545968313508470
    1. Penko A. L., Streicher M. C., Koop M. M., Dey T., Rosenfeldt A. B., Bazyk A. S., et al. (2018). Dual-task interference disrupts Parkinson’s gait across multiple cognitive domains. Neuroscience 379 375–382. 10.1016/j.neuroscience.2018.03.021
    1. Pickering R. M., Grimbergen Y. A., Rigney U., Ashburn A., Mazibrada G., Wood B., et al. (2007). A meta-analysis of six prospective studies of falling in Parkinson’s disease. Mov. Disord. 22 1892–1900. 10.1002/mds.21598
    1. Plotnik M., Dagan Y., Gurevich T., Giladi N., Hausdorff J. M. (2011). Effects of cognitive function on gait and dual tasking abilities in patients with Parkinson’s disease suffering from motor response fluctuations. Exp. Brain Res. 208 169–179. 10.1007/s00221-010-2469-y
    1. Raffegeau T. E., Krehbiel L. M., Kang N., Thijs F. J., Altmann L. J. P., Cauraugh J. H., et al. (2019). A meta-analysis: Parkinson’s disease and dual-task walking. Parkinsonism Relat. Disord. 62 28–35.
    1. Rochester L., Galna B., Lord S., Burn D. (2014). The nature of dual-task interference during gait in incident Parkinson’s disease. Neuroscience 265 83–94. 10.1016/j.neuroscience.2014.01.041
    1. Rochester L., Hetherington V., Jones D., Nieuwboer A., Willems A. M., Kwakkel G., et al. (2004). Attending to the task: interference effects of functional tasks on walking in Parkinson’s disease and the roles of cognition, depression, fatigue, and balance. Arch. Phys. Med. Rehabil. 85 1578–1585. 10.1016/j.apmr.2004.01.025
    1. Roheger M., Kalbe E., Liepelt-Scarfone I. (2018). Progression of cognitive decline in Parkinson’s disease. J. Parkinsons Dis. 8 183–193. 10.3233/jpd-181306
    1. Rosenberg-Katz K., Herman T., Jacob Y., Mirelman A., Giladi N., Hendler T., et al. (2015). Fall risk is associated with amplified functional connectivity of the central executive network in patients with Parkinson’s disease. J. Neurol. 262 2448–2456. 10.1007/s00415-015-7865-6
    1. Salazar R. D., Ren X., Ellis T. D., Toraif N., Barthelemy O. J., Neargarder S., et al. (2017). Dual tasking in Parkinson’s disease: cognitive consequences while walking. Neuropsychology 31 613–623. 10.1037/neu0000331
    1. Schäfer T., Schwarz M. A. (2019). The meaningfulness of effect sizes in psychological research: differences between sub-disciplines and the impact of potential biases. Front. Psychol. 10:813. 10.3389/fpsyg.2019.00813
    1. Schlachetzki J. C. M., Barth J., Marxreiter F., Gossler J., Kohl Z., Reinfelder S., et al. (2017). Wearable sensors objectively measure gait parameters in Parkinson’s disease. PLoS One 12:e0183989. 10.1371/journal.pone.0183989
    1. Schneider J. S., Sendek S., Yang C. (2015). Relationship between motor symptoms, cognition, and demographic characteristics in treated mild/moderate Parkinson’s disease. PLoS One 10:e0123231. 10.1371/journal.pone.0123231
    1. Stegemöller E. L., Wilson J. P., Hazamy A., Shelley M. C., Okun M. S., Altmann L. J., et al. (2014). Associations between cognitive and gait performance during single- and dual-task walking in people with Parkinson disease. Phys. Ther. 94 757–766. 10.2522/ptj.20130251
    1. Strouwen C., Molenaar E. A., Keus S. H., Münks L., Bloem B. R., Nieuwboer A. (2016). Test-retest reliability of dual-task outcome measures in people with Parkinson disease. Phys. Ther. 96 1276–1286. 10.2522/ptj.20150244
    1. Szturm T., Beheshti I., Mahana B., Hobson D. E., Goertzen A., Ko J. H. (2020). Imaging cerebral glucose metabolism during dual-task walking in patients with Parkinson’s disease. J. Neuroimaging 31 356–362. 10.1111/jon.12812
    1. Szturm T., Kolesar T. A., Mahana B., Goertzen A. L., Hobson D. E., Marotta J. J., et al. (2021). Changes in metabolic activity and gait function by dual-task cognitive game-based treadmill system in Parkinson’s disease: protocol of a randomized controlled trial. Front. Aging Neurosci. 13:680270. 10.3389/fnagi.2021.680270
    1. Szturm T. J., Sakhalkar V. S., Kanitkar A., Nankar M. (2017). Computerized dual-task testing of gait and visuospatial cognitive functions; test-retest reliability and validity. Front. Hum. Neurosci. 11:105. 10.3389/fnhum.2017.00105
    1. Watt J. R., Franz J. R., Jackson K., Dicharry J., Riley P. O., Kerrigan D. C. (2010). A three-dimensional kinematic and kinetic comparison of overground and treadmill walking in healthy elderly subjects. Clin. Biomech. 25 444–449. 10.1016/j.clinbiomech.2009.09.002
    1. Wollesen B., Voelcker-Rehage C., Regenbrecht T., Mattes K. (2016). Influence of a visual-verbal Stroop test on standing and walking performance of older adults. Neuroscience 318 166–177. 10.1016/j.neuroscience.2016.01.031
    1. Wu T., Hallett M., Chan P. (2015). Motor automaticity in Parkinson’s disease. Neurobiol. Dis. 82 226–234. 10.1016/j.nbd.2015.06.014
    1. Yao J., Guo N., Xiao Y., Li Z., Li Y., Pu F., et al. (2019). Lower limb joint motion and muscle force in treadmill and over-ground exercise. Biomed. Eng. Online 18:89.
    1. Zou G. Y. (2012). Sample size formulas for estimating intraclass correlation coefficients with precision and assurance. Stat. Med. 31 3972–3981. 10.1002/sim.5466

Source: PubMed

3
Tilaa