Description of the Method for Evaluating Digital Endpoints in Alzheimer Disease Study: Protocol for an Exploratory, Cross-sectional Study

Jelena Curcic, Vanessa Vallejo, Jennifer Sorinas, Oleksandr Sverdlov, Jens Praestgaard, Mateusz Piksa, Mark Deurinck, Gul Erdemli, Maximilian Bügler, Ioannis Tarnanas, Nick Taptiklis, Francesca Cormack, Rebekka Anker, Fabien Massé, William Souillard-Mandar, Nathan Intrator, Lior Molcho, Erica Madero, Nicholas Bott, Mieko Chambers, Josef Tamory, Matias Shulz, Gerardo Fernandez, William Simpson, Jessica Robin, Jón G Snædal, Jang-Ho Cha, Kristin Hannesdottir, Jelena Curcic, Vanessa Vallejo, Jennifer Sorinas, Oleksandr Sverdlov, Jens Praestgaard, Mateusz Piksa, Mark Deurinck, Gul Erdemli, Maximilian Bügler, Ioannis Tarnanas, Nick Taptiklis, Francesca Cormack, Rebekka Anker, Fabien Massé, William Souillard-Mandar, Nathan Intrator, Lior Molcho, Erica Madero, Nicholas Bott, Mieko Chambers, Josef Tamory, Matias Shulz, Gerardo Fernandez, William Simpson, Jessica Robin, Jón G Snædal, Jang-Ho Cha, Kristin Hannesdottir

Abstract

Background: More sensitive and less burdensome efficacy end points are urgently needed to improve the effectiveness of clinical drug development for Alzheimer disease (AD). Although conventional end points lack sensitivity, digital technologies hold promise for amplifying the detection of treatment signals and capturing cognitive anomalies at earlier disease stages. Using digital technologies and combining several test modalities allow for the collection of richer information about cognitive and functional status, which is not ascertainable via conventional paper-and-pencil tests.

Objective: This study aimed to assess the psychometric properties, operational feasibility, and patient acceptance of 10 promising technologies that are to be used as efficacy end points to measure cognition in future clinical drug trials.

Methods: The Method for Evaluating Digital Endpoints in Alzheimer Disease study is an exploratory, cross-sectional, noninterventional study that will evaluate 10 digital technologies' ability to accurately classify participants into 4 cohorts according to the severity of cognitive impairment and dementia. Moreover, this study will assess the psychometric properties of each of the tested digital technologies, including the acceptable range to assess ceiling and floor effects, concurrent validity to correlate digital outcome measures to traditional paper-and-pencil tests in AD, reliability to compare test and retest, and responsiveness to evaluate the sensitivity to change in a mild cognitive challenge model. This study included 50 eligible male and female participants (aged between 60 and 80 years), of whom 13 (26%) were amyloid-negative, cognitively healthy participants (controls); 12 (24%) were amyloid-positive, cognitively healthy participants (presymptomatic); 13 (26%) had mild cognitive impairment (predementia); and 12 (24%) had mild AD (mild dementia). This study involved 4 in-clinic visits. During the initial visit, all participants completed all conventional paper-and-pencil assessments. During the following 3 visits, the participants underwent a series of novel digital assessments.

Results: Participant recruitment and data collection began in June 2020 and continued until June 2021. Hence, the data collection occurred during the COVID-19 pandemic (SARS-CoV-2 virus pandemic). Data were successfully collected from all digital technologies to evaluate statistical and operational performance and patient acceptance. This paper reports the baseline demographics and characteristics of the population studied as well as the study's progress during the pandemic.

Conclusions: This study was designed to generate feasibility insights and validation data to help advance novel digital technologies in clinical drug development. The learnings from this study will help guide future methods for assessing novel digital technologies and inform clinical drug trials in early AD, aiming to enhance clinical end point strategies with digital technologies.

International registered report identifier (irrid): DERR1-10.2196/35442.

Keywords: Alzheimer disease; brain amyloid; clinical trial design; cognition; digital endpoints; methodology study; mobile phone.

Conflict of interest statement

Conflicts of Interest: JC, VV, JS, OS, JP, MP, MD, GE, J-HC, and KH are employees of Novartis. MB and IT are employees of Altoida Inc, NT and FC are employees of Cambridge Cognition, RA and FM are employees of MindMaze SA, WS-M is an advisor for Linus Health Inc, NI and LM are employees of Neurosteer Inc, EM is an employee of Neurotrack Technologies Inc, NB was an employee of Neurotrack Technologies Inc, MC and JT are employees of NeuroVision Imaging Inc, MS and GF are employees of ViewMind Inc, and BS and JR are employees of Winterlight Labs.

©Jelena Curcic, Vanessa Vallejo, Jennifer Sorinas, Oleksandr Sverdlov, Jens Praestgaard, Mateusz Piksa, Mark Deurinck, Gul Erdemli, Maximilian Bügler, Ioannis Tarnanas, Nick Taptiklis, Francesca Cormack, Rebekka Anker, Fabien Massé, William Souillard-Mandar, Nathan Intrator, Lior Molcho, Erica Madero, Nicholas Bott, Mieko Chambers, Josef Tamory, Matias Shulz, Gerardo Fernandez, William Simpson, Jessica Robin, Jón G Snædal, Jang-Ho Cha, Kristin Hannesdottir. Originally published in JMIR Research Protocols (https://www.researchprotocols.org), 10.08.2022.

Figures

Figure 1
Figure 1
A road map to advance digital end points within the drug development process.
Figure 2
Figure 2
Method for Evaluating Digital Endpoints in Alzheimer Disease study design.
Figure 3
Figure 3
Order of assessments at each visit of the MEDIA study. CDR: Clinical Dementia Rating scale; ECog: Everyday Cognition scale; FACIT: Functional Assessment of Chronic Illness Therapy; KSS: Karolinska Sleepiness Scale; MEDIA: Method for Evaluating Digital Endpoints in Alzheimer Disease; MMSE: Mini-Mental State Examination; NPI-Q: Neuropsychiatric Inventory–Questionnaire; RBANS: Repeatable Battery for the Assessment of Neuropsychological Status.
Figure 4
Figure 4
All technologies included in the MEDIA study. EEG: electroencephalogram; MEDIA: Method for Evaluating Digital Endpoints in Alzheimer Disease; VR: virtual reality.
Figure 5
Figure 5
Task flow during dual tasking paradigm testing.
Figure 6
Figure 6
Study progress in Iceland during the worldwide COVID-19 pandemic.

References

    1. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M, Alzheimer's Disease International Global prevalence of dementia: a Delphi consensus study. Lancet. 2005 Dec 17;366(9503):2112–7. doi: 10.1016/S0140-6736(05)67889-0. S0140-6736(05)67889-0
    1. Logie RH, Cocchini G, Delia Sala S, Baddeley AD. Is there a specific executive capacity for dual task coordination? Evidence from Alzheimer's disease. Neuropsychology. 2004 Jul;18(3):504–13. doi: 10.1037/0894-4105.18.3.504.2004-16644-011
    1. Marshall GA, Rentz DM, Frey MT, Locascio JJ, Johnson KA, Sperling RA, Alzheimer's Disease Neuroimaging Initiative Executive function and instrumental activities of daily living in mild cognitive impairment and Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):300–8. doi: 10.1016/j.jalz.2010.04.005. S1552-5260(10)00106-8
    1. Genius J, Klafki H, Benninghoff J, Esselmann H, Wiltfang J. Current application of neurochemical biomarkers in the prediction and differential diagnosis of Alzheimer's disease and other neurodegenerative dementias. Eur Arch Psychiatry Clin Neurosci. 2012 Nov;262 Suppl 2:S71–7. doi: 10.1007/s00406-012-0362-3.
    1. Cummings JL, Morstorf T, Zhong K. Alzheimer's disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther. 2014 Jul 3;6(4):37. doi: 10.1186/alzrt269. alzrt269
    1. Kotler-Cope S, Camp CJ. Anosognosia in Alzheimer disease. Alzheimer Dis Assoc Disord. 1995;9(1):52–6. doi: 10.1097/00002093-199505000-00010.
    1. Diaz-Orueta U, Lizarazu B, Climent G, Banterla F. Virtual reality for neuropsychological assessment. In: Ma M, Jain LC, Anderson P, editors. Virtual, Augmented Reality and Serious Games for Healthcare 1. Berlin, Germany: Springer; 2014. pp. 233–55.
    1. Herrera C, Chambon C, Michel BF, Paban V, Alescio-Lautier B. Positive effects of computer-based cognitive training in adults with mild cognitive impairment. Neuropsychologia. 2012 Jul;50(8):1871–81. doi: 10.1016/j.neuropsychologia.2012.04.012.S0028-3932(12)00163-7
    1. Hannesdottir K, Sverdlov O, Curcic J, Vargas G, Hache T, Serra D, Clay I, Thornton-Wells T, Praestgaard J, Deurinck M, Graf A, Dolmetsch R, Beckman E, Cha JH. P4-339: The media study: a novel method for evaluating digital endpoints in Alzheimer's disease. Alzheimers Dement. 2006 Jul;14(7S_Part_30):P1596–7. doi: 10.1016/j.jalz.2018.07.162.
    1. Ortof E, Crystal HA. Rate of progression of Alzheimer's disease. J Am Geriatr Soc. 1989 Jun;37(6):511–4. doi: 10.1111/j.1532-5415.1989.tb05681.x.
    1. Musiek ES, Xiong DD, Holtzman DM. Sleep, circadian rhythms, and the pathogenesis of Alzheimer disease. Exp Mol Med. 2015 Mar 13;47(3):e148. doi: 10.1038/emm.2014.121. doi: 10.1038/emm.2014.121.emm2014121
    1. Jackson ML, Van Dongen HP. Cognitive effects of sleepiness. In: Thorpy MJ, Billiard M, editors. Sleepiness: Causes, Consequences and Treatment. Cambridge, UK: Cambridge University Press; 2011. pp. 72–81.
    1. Lim J, Dinges DF. A meta-analysis of the impact of short-term sleep deprivation on cognitive variables. Psychol Bull. 2010 May;136(3):375–89. doi: 10.1037/a0018883. 2010-07936-006
    1. Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, Liu E, Molinuevo JL, Montine T, Phelps C, Rankin KP, Rowe CC, Scheltens P, Siemers E, Snyder HM, Sperling R, Contributors NIA-AA Research Framework: toward a biological definition of Alzheimer's disease. Alzheimers Dement. 2018 Apr;14(4):535–62. doi: 10.1016/j.jalz.2018.02.018. S1552-5260(18)30072-4
    1. Randolph C, Tierney MC, Mohr E, Chase TN. The repeatable battery for the assessment of neuropsychological status (RBANS): preliminary clinical validity. J Clin Exp Neuropsychol. 1998 Jun;20(3):310–9. doi: 10.1076/jcen.20.3.310.823.
    1. Duff K, Foster NL, Dennett K, Hammers DB, Zollinger LV, Christian PE, Butterfield RI, Beardmore BE, Wang AY, Morton KA, Hoffman JM. Amyloid deposition and cognition in older adults: the effects of premorbid intellect. Arch Clin Neuropsychol. 2013 Nov;28(7):665–71. doi: 10.1093/arclin/act047. act047
    1. Mukai Y, Mo Y, Sur C, Voss T, Zhang Y, Kost J, Klein G, Sampat M, Staewon D, Purcell D, Barakos J, Suhy J, Michelson D, Egan M. Predictors of amyloid positivity in a study sample with amnestic mild cognitive impairment. Proceedings of the 2015 Clinical Trials on Alzheimer's Disease; CTAD '15; November 5-7, 2015; Barcelona, Spain. 2015. p. 369.
    1. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189–98. doi: 10.1016/0022-3956(75)90026-6.0022-3956(75)90026-6
    1. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993 Nov;43(11):2412–4. doi: 10.1212/wnl.43.11.2412-a.
    1. Cummings JL. The Neuropsychiatric Inventory: assessing psychopathology in dementia patients. Neurology. 1997 May;48(5 Suppl 6):S10–6. doi: 10.1212/wnl.48.5_suppl_6.10s.
    1. Kaufer DI, Cummings JL, Ketchel P, Smith V, MacMillan A, Shelley T, Lopez OL, DeKosky ST. Validation of the NPI-Q, a brief clinical form of the Neuropsychiatric Inventory. J Neuropsychiatry Clin Neurosci. 2000;12(2):233–9. doi: 10.1176/jnp.12.2.233.
    1. Farias ST, Mungas D, Reed BR, Cahn-Weiner D, Jagust W, Baynes K, Decarli C. The measurement of everyday cognition (ECog): scale development and psychometric properties. Neuropsychology. 2008 Jul;22(4):531–44. doi: 10.1037/0894-4105.22.4.531. 2008-08178-012
    1. Webster K, Cella D, Yost K. The Functional Assessment of Chronic Illness Therapy (FACIT) measurement system: properties, applications, and interpretation. Health Qual Life Outcomes. 2003 Dec 16;1:79. doi: 10.1186/1477-7525-1-79. 1477-7525-1-79
    1. Shahid A, Wilkinson K, Marcu S, Shapiro CM. Karolinska Sleepiness Scale (KSS) In: Shahid A, Wilkinson K, Marcu S, Shapiro CM, editors. STOP, THAT and One Hundred Other Sleep Scales. New York, NY, USA: Springer; 2012. pp. 209–10.
    1. Owen AM, Milner B, Petrides M, Evans AC. A specific role for the right parahippocampal gyrus in the retrieval of object-location: a positron emission tomography study. J Cogn Neurosci. 1996 Nov;8(6):588–602. doi: 10.1162/jocn.1996.8.6.588.
    1. Mariani B, Hoskovec C, Rochat S, Büla C, Penders J, Aminian K. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J Biomech. 2010 Nov 16;43(15):2999–3006. doi: 10.1016/j.jbiomech.2010.07.003.S0021-9290(10)00368-4
    1. Mariani B, Jiménez MC, Vingerhoets FJ, Aminian K. On-shoe wearable sensors for gait and turning assessment of patients with Parkinson's disease. IEEE Trans Biomed Eng. 2013 Jan;60(1):155–8. doi: 10.1109/TBME.2012.2227317.
    1. Mariani B, Rochat S, Büla CJ, Aminian K. Heel and toe clearance estimation for gait analysis using wireless inertial sensors. IEEE Trans Biomed Eng. 2012 Nov;59(11):3162–8. doi: 10.1109/TBME.2012.2216263.
    1. Beurskens R, Steinberg F, Antoniewicz F, Wolff W, Granacher U. Neural correlates of dual-task walking: effects of cognitive versus motor interference in young adults. Neural Plast. 2016;2016:8032180. doi: 10.1155/2016/8032180. doi: 10.1155/2016/8032180.
    1. Borod JC, Goodglass H, Kaplan E. Normative data on the boston diagnostic aphasia examination, parietal lobe battery, and the boston naming Test. J Clin Neuropsychol. 1980 Sep 10;2(3):209–15. doi: 10.1080/01688638008403793.
    1. Forbes-McKay KE, Venneri A. Detecting subtle spontaneous language decline in early Alzheimer's disease with a picture description task. Neurol Sci. 2005 Oct;26(4):243–54. doi: 10.1007/s10072-005-0467-9.
    1. Fraser KC, Meltzer JA, Rudzicz F. Linguistic features identify Alzheimer's disease in narrative speech. J Alzheimers Dis. 2016;49(2):407–22. doi: 10.3233/JAD-150520.JAD150520
    1. Giles E, Patterson K, Hodges JR. Performance on the Boston Cookie theft picture description task in patients with early dementia of the Alzheimer's type: missing information. Aphasiology. 1996 May;10(4):395–408. doi: 10.1080/02687039608248419.
    1. Mueller KD, Hermann B, Mecollari J, Turkstra LS. Connected speech and language in mild cognitive impairment and Alzheimer's disease: a review of picture description tasks. J Clin Exp Neuropsychol. 2018 Nov;40(9):917–39. doi: 10.1080/13803395.2018.1446513.
    1. Parra MA, Abrahams S, Logie RH, Sala SD. Age and binding within-dimension features in visual short-term memory. Neurosci Lett. 2009 Jan 02;449(1):1–5. doi: 10.1016/j.neulet.2008.10.069.S0304-3940(08)01428-6
    1. Parra MA, Calia C, García AF, Olazarán-Rodríguez J, Hernandez-Tamames JA, Alvarez-Linera J, Della Sala S, Fernandez Guinea S. Refining memory assessment of elderly people with cognitive impairment: insights from the short-term memory binding test. Arch Gerontol Geriatr. 2019;83:114–20. doi: 10.1016/j.archger.2019.03.025.S0167-4943(19)30081-0
    1. Parra MA, Sala SD, Abrahams S, Logie RH, Méndez LG, Lopera F. Specific deficit of colour-colour short-term memory binding in sporadic and familial Alzheimer's disease. Neuropsychologia. 2011 Jun;49(7):1943–52. doi: 10.1016/j.neuropsychologia.2011.03.022.S0028-3932(11)00154-0
    1. Fernández G, Shalom DE, Kliegl R, Sigman M. Eye movements during reading proverbs and regular sentences: the incoming word predictability effect. Lang Cogn Neurosci. 2013 Jan 08;29(3):260–73. doi: 10.1080/01690965.2012.760745.
    1. Koronyo Y, Biggs D, Barron E, Boyer DS, Pearlman JA, Au WJ, Kile SJ, Blanco A, Fuchs DT, Ashfaq A, Frautschy S, Cole GM, Miller CA, Hinton DR, Verdooner SR, Black KL, Koronyo-Hamaoui M. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer's disease. JCI Insight. 2017 Aug 17;2(16):e93621. doi: 10.1172/jci.insight.93621. doi: 10.1172/jci.insight.93621.93621
    1. Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, Schwartz M, Farkas DL. Identification of amyloid plaques in retinas from Alzheimer's patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage. 2011 Jan;54 Suppl 1:S204–17. doi: 10.1016/j.neuroimage.2010.06.020. S1053-8119(10)00864-5
    1. Souillard-Mandar W, Davis R, Rudin C, Au R, Libon DJ, Swenson R, Price CC, Lamar M, Penney DL. Learning classification models of cognitive conditions from subtle behaviors in the digital clock drawing test. Mach Learn. 2016 Mar;102(3):393–441. doi: 10.1007/s10994-015-5529-5.
    1. Souillard-Mandar W, Penney D, Schaible B, Pascual-Leone A, Au R, Davis R. DCTclock: clinically-interpretable and automated artificial intelligence analysis of drawing behavior for capturing cognition. Front Digit Health. 2021 Oct 15;3:750661. doi: 10.3389/fdgth.2021.750661.
    1. Brooke J. SUS: a 'quick and dirty' usability scale. In: Jordan PW, Thomas B, McClelland IL, Weerdmeester B, editors. Usability Evaluation in Industry. Boca Raton, FL, USA: CRC Press; 1995. pp. 189–94.
    1. Hart SG, Staveland LE. Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. Adv Psychol. 1988;52:139–83. doi: 10.1016/S0166-4115(08)62386-9.
    1. Julious SA. Sample size of 12 per group rule of thumb for a pilot study. Pharmaceut Statist. 2005 Oct;4(4):287–91. doi: 10.1002/pst.185. doi: 10.1002/pst.185.
    1. Ritchie H, Mathieu E, Rodes-Guirao L, Appel C, Giattino C, Ortiz-Ospina E, Hasell J, Macdonald B, Dattani S, Roser M. Coronavirus Pandemic (COVID-19) Our World in Data. 2020. [2022-07-04]. .
    1. Chen R, Jankovic F, Marinsek N, Foschini L, Kourtis L, Signorini A, Pugh M, Shen J, Yaari R, Maljkovic V, Sunga M, Song HH, Jung HJ, Tseng B, Trister A. Developing measures of cognitive impairment in the real world from consumer-grade multimodal sensor streams. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; KDD '19; August 4-8, 2019; Anchorage, AK, USA. 2019. pp. 2145–55.
    1. Israsena P, Jirayucharoensak S, Hemrungrojn S, Pan-Ngum S. Brain exercising games with consumer-grade single-channel electroencephalogram neurofeedback: pre-post intervention study. JMIR Serious Games. 2021 Jun 15;9(2):e26872. doi: 10.2196/26872. v9i2e26872
    1. Cormack F, McCue M, Taptiklis N, Skirrow C, Glazer E, Panagopoulos E, van Schaik TA, Fehnert B, King J, Barnett JH. Wearable technology for high-frequency cognitive and mood assessment in major depressive disorder: longitudinal observational study. JMIR Ment Health. 2019 Nov 18;6(11):e12814. doi: 10.2196/12814. v6i11e12814
    1. Gold M, Amatniek J, Carrillo MC, Cedarbaum JM, Hendrix JA, Miller BB, Robillard JM, Rice JJ, Soares H, Tome MB, Tarnanas I, Vargas G, Bain LJ, Czaja SJ. Digital technologies as biomarkers, clinical outcomes assessment, and recruitment tools in Alzheimer's disease clinical trials. Alzheimers Dement (N Y) 2018 May 24;4:234–42. doi: 10.1016/j.trci.2018.04.003. S2352-8737(18)30021-0
    1. Tarnanas I, Tsolaki A, Wiederhold M, Wiederhold B, Tsolaki M. Five-year biomarker progression variability for Alzheimer's disease dementia prediction: can a complex instrumental activities of daily living marker fill in the gaps? Alzheimers Dement (Amst) 2015 Nov 14;1(4):521–32. doi: 10.1016/j.dadm.2015.10.005. S2352-8729(15)00084-6
    1. Sverdlov O, Curcic J, Hannesdottir K, Gou L, De Luca V, Ambrosetti F, Zhang B, Praestgaard J, Vallejo V, Dolman A, Gomez-Mancilla B, Biliouris K, Deurinck M, Cormack F, Anderson JJ, Bott NT, Peremen Z, Issachar G, Laufer O, Joachim D, Jagesar RR, Jongs N, Kas MJ, Zhuparris A, Zuiker R, Recourt K, Zuilhof Z, Cha JH, Jacobs GE. A study of novel exploratory tools, digital technologies, and central nervous system biomarkers to characterize unipolar depression. Front Psychiatry. 2021 May 6;12:640741. doi: 10.3389/fpsyt.2021.640741. doi: 10.3389/fpsyt.2021.640741.
    1. Questions and answers: qualification of digital technology-based methodologies to support approval of medicinal products (EMA/219860/2020) European Medicines Agency. 2020. [2022-07-04]. .
    1. Qualification of novel methodologies for drug development: guidance to applicants (EMA/CHMP/SAWP/72894/2008) European Medicines Agency. 2020. [2022-07-04]. .
    1. Qualification Process for Drug Development Tools Guidance for Industry and FDA Staff (FDA-2010-D-0529) U.S. Food & Drug Administration. 2020. [2022-07-04]. .
    1. Biomarker Qualification: Evidentiary Framework: Draft Guidance for Industry and FDA Staff (FDA-2018-D-4267) U.S. Food & Drug Administration. 2018. [2022-07-04]. .
    1. Sathian B, Asim M, Banerjee I, Pizarro AB, Roy B, van Teijlingen ER, do Nascimento IJ, Alhamad HK. Impact of COVID-19 on clinical trials and clinical research: a systematic review. Nepal J Epidemiol. 2020 Sep 30;10(3):878–87. doi: 10.3126/nje.v10i3.31622.
    1. Saevarsdóttir KS, Hilmarsdóttir HÝ, Magnúsdóttir I, Hauksdóttir A, Thordardottir E, Gudjónsdóttir ÁB, Tomasson G, Rúnarsdóttir H, Jónsdóttir HL, Gudmundsdóttir B, Pétursdóttir G, Petersen PH, Kristinsson SY, Love TJ, Hansdóttir S, Hardardóttir H, Gudmundsson G, Eythorsson E, Gudmundsdóttir DG, Sigbjörnsdóttir H, Haraldsdóttir S, Möller AD, Palsson R, Jakobsdóttir J, Aspelund T, Valdimarsdottir U. Illness severity and risk of mental morbidities among patients recovering from COVID-19: a cross-sectional study in the Icelandic population. BMJ Open. 2021 Jul 23;11(7):e049967. doi: 10.1136/bmjopen-2021-049967. bmjopen-2021-049967

Source: PubMed

3
Tilaa