Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Update on Therapeutic Options

Chau-Chyun Sheu, Ya-Ting Chang, Shang-Yi Lin, Yen-Hsu Chen, Po-Ren Hsueh, Chau-Chyun Sheu, Ya-Ting Chang, Shang-Yi Lin, Yen-Hsu Chen, Po-Ren Hsueh

Abstract

Carbapenems are considered as last-resort antibiotics for the treatment of infections caused by multidrug-resistant Gram-negative bacteria. With the increasing use of carbapenems in clinical practice, the emergence of carbapenem-resistant pathogens now poses a great threat to human health. Currently, antibiotic options for the treatment of carbapenem-resistant Enterobacteriaceae (CRE) are very limited, with polymyxins, tigecycline, fosfomycin, and aminoglycosides as the mainstays of therapy. The need for new and effective anti-CRE therapies is urgent. Here, we describe the current understanding of issues related to CRE and review combination therapeutic strategies for CRE infections, including high-dose tigecycline, high-dose prolonged-infusion of carbapenem, and double carbapenem therapy. We also review the newly available antibiotics which have potential in the future treatment of CRE infections: ceftazidime/avibactam, which is active against KPC and OXA-48 producers; meropenem/vaborbactam, which is active against KPC producers; plazomicin, which is a next-generation aminoglycoside with in vitro activity against CRE; and eravacycline, which is a tetracycline class antibacterial with in vitro activity against CRE. Although direct evidence for CRE treatment is still lacking and the development of resistance is a concern, these new antibiotics provide additional therapeutic options for CRE infections. Finally, we review other potential anti-CRE antibiotics in development: imipenem/relebactam and cefiderocol. Currently, high-dose and combination strategies that may include the new β-lactam/β-lactamase inhibitors should be considered in severe CRE infections to maximize treatment success. In the future, when more treatment options are available, therapy for CRE infections should be individualized and based on molecular phenotypes of resistance, susceptibility profiles, disease severity, and patient characteristics. More high-quality studies are needed to guide effective treatment for infections caused by CRE.

Keywords: avibactam; carbapenem-resistant Enterobacteriaceae; carbapenemase; carbapenems; combination therapy; relebactam; vaborbactam.

References

    1. Anderson K. F., Lonsway D. R., Rasheed J. K., Biddle J., Jensen B., McDougal L. K., et al. (2007). Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae. J. Clin. Microbiol. 45 2723–2725. 10.1128/JCM.00015-07
    1. Balandin Moreno B., Fernandez Simon I., Pintado Garcia V., Sanchez Romero I., Isidoro Fernandez B., Romera Ortega M. A., et al. (2014). Tigecycline therapy for infections due to carbapenemase-producing Klebsiella pneumoniae in critically ill patients. Scand. J. Infect. Dis. 46 175–180. 10.3109/00365548.2013.861608
    1. Blizzard T. A., Chen H., Kim S., Wu J., Bodner R., Gude C., et al. (2014). Discovery of MK-7655, a beta-lactamase inhibitor for combination with Primaxin(R). Bioorg. Med. Chem. Lett. 24 780–785. 10.1016/j.bmcl.2013.12.101
    1. Bulik C. C., Christensen H., Li P., Sutherland C. A., Nicolau D. P., Kuti J. L. (2010a). Comparison of the activity of a human simulated, high-dose, prolonged infusion of meropenem against Klebsiella pneumoniae producing the KPC carbapenemase versus that against Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Antimicrob. Agents Chemother. 54 804–810. 10.1128/AAC.01190-09
    1. Bulik C. C., Nicolau D. P. (2010b). In vivo efficacy of simulated human dosing regimens of prolonged-infusion doripenem against carbapenemase-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 54 4112–4115. 10.1128/AAC.00026-10
    1. Bulik C. C., Nicolau D. P. (2011). Double-carbapenem therapy for carbapenemase-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 55 3002–3004. 10.1128/AAC.01420-10
    1. Capone A., Giannella M., Fortini D., Giordano A., Meledandri M., Ballardini M., et al. (2013). High rate of colistin resistance among patients with carbapenem-resistant Klebsiella pneumoniae infection accounts for an excess of mortality. Clin. Microbiol. Infect. 19 E23–E30. 10.1111/1469-0691.12070
    1. Castanheira M., Davis A. P., Mendes R. E., Serio A. W., Krause K. M., Flamm R. K. (2018a). In vitro activity of plazomicin against Gram-negative and Gram-positive isolates collected from U.S. hospitals and comparative activities of aminoglycosides against carbapenem-resistant Enterobacteriaceae and isolates carrying carbapenemase genes. Antimicrob. Agents Chemother 62:e00313-18. 10.1128/AAC.00313-18
    1. Castanheira M., Deshpande L. M., Woosley L. N., Serio A. W., Krause K. M., Flamm R. K. (2018b). Activity of plazomicin compared with other aminoglycosides against isolates from European and adjacent countries, including Enterobacteriaceae molecularly characterized for aminoglycoside-modifying enzymes and other resistance mechanisms. J. Antimicrob. Chemother. 73 3346–3354. 10.1093/jac/dky344
    1. Castanheira M., Huband M. D., Mendes R. E., Flamm R. K. (2017). Meropenem-vaborbactam tested against contemporary Gram-negative isolates collected worldwide during 2014, including carbapenem-resistant, KPC-producing, multidrug-resistant, and extensively drug-Resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 61:e00567-17. 10.1128/AAC.00567-17
    1. Castanheira M., Mills J. C., Costello S. E., Jones R. N., Sader H. S. (2015). Ceftazidime-avibactam activity tested against Enterobacteriaceae isolates from U.S. hospitals (2011 to 2013) and characterization of beta-lactamase-producing strains. Antimicrob. Agents Chemother. 59 3509–3517. 10.1128/AAC.00163-15
    1. Castanheira M., Rhomberg P. R., Flamm R. K., Jones R. N. (2016). Effect of the beta-lactamase inhibitor vaborbactam combined with meropenem against serine carbapenemase-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 60 5454–5458. 10.1128/AAC.00711-16
    1. Castón J. J., Lacort-Peralta I., Martin-Davila P., Loeches B., Tabares S., Temkin L., et al. (2017). Clinical efficacy of ceftazidime/avibactam versus other active agents for the treatment of bacteremia due to carbapenemase-producing Enterobacteriaceae in hematologic patients. Int. J. Infect. Dis. 59 118–123. 10.1016/j.ijid.2017.03.021
    1. Cheng I. L., Chen Y. H., Lai C. C., Tang H. J. (2018). Intravenous colistin monotherapy versus combination therapy against carbapenem-resistant Gram-negative bacteria infections: meta-analysis of randomized controlled trials. J. Clin. Med. 7:E208. 10.3390/jcm7080208
    1. Crandon J. L., Nicolau D. P. (2013). Human simulated studies of aztreonam and aztreonam-avibactam to evaluate activity against challenging gram-negative organisms, including metallo-β-lactamase producers. Antimicrob. Agents Chemother. 57 3299–3306. 10.1128/AAC.01989-12
    1. Daikos G. L., Markogiannakis A. (2011). Carbapenemase-producing Klebsiella pneumoniae: (when) might we still consider treating with carbapenems? Clin. Microbiol. Infect. 17 1135–1141. 10.1111/j.1469-0691.2011.03553.x
    1. Daikos G. L., Panagiotakopoulou A., Tzelepi E., Loli A., Tzouvelekis L. S., Miriagou V. (2007). Activity of imipenem against VIM-1 metallo-beta-lactamase-producing Klebsiella pneumoniae in the murine thigh infection model. Clin. Microbiol. Infect. 13 202–205. 10.1111/j.1469-0691.2006.01590.x
    1. Daikos G. L., Petrikkos P., Psichogiou M., Kosmidis C., Vryonis E., Skoutelis A., et al. (2009). Prospective observational study of the impact of VIM-1 metallo-beta-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. Antimicrob. Agents Chemother. 53 1868–1873. 10.1128/AAC.00782-08
    1. Daikos G. L., Tsaousi S., Tzouvelekis L. S., Anyfantis I., Psichogiou M., Argyropoulou A., et al. (2014). Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob. Agents Chemother. 58 2322–2328. 10.1128/AAC.02166-13
    1. Dautzenberg M. J., Ossewaarde J. M., de Kraker M. E., van der Zee A., van Burgh S., de Greeff S. C., et al. (2014). Successful control of a hospital-wide outbreak of OXA-48 producing Enterobacteriaceae in the Netherlands, 2009 to 2011. Euro. Surveill. 19:20723. 10.2807/1560-7917.ES2014.19.9.20723
    1. David M. Z., Dryden M., Gottlieb T., Tattevin P., Gould I. M. (2017). Recently approved antibacterials for methicillin-resistant Staphylococcus aureus (MRSA) and other Gram-positive pathogens: the shock of the new. Int. J. Antimicrob. Agents 50 303–307. 10.1016/j.ijantimicag.2017.05.006
    1. de Jonge B. L., Karlowsky J. A., Kazmierczak K. M., Biedenbach D. J., Sahm D. F., Nichols W. W. (2016). In vitro susceptibility to ceftazidime-avibactam of carbapenem-nonsusceptible Enterobacteriaceae isolates collected during the INFORM Global Surveillance Study (2012 to 2014). Antimicrob. Agents Chemother. 60 3163–3169. 10.1128/AAC.03042-15
    1. De Pascale G., Martucci G., Montini L., Panarello G., Cutuli S. L., Di Carlo D., et al. (2017). Double carbapenem as a rescue strategy for the treatment of severe carbapenemase-producing Klebsiella pneumoniae infections: a two-center, matched case-control study. Crit. Care 21:173. 10.1186/s13054-017-1769-z
    1. De Pascale G., Montini L., Pennisi M., Bernini V., Maviglia R., Bello G., et al. (2014). High dose tigecycline in critically ill patients with severe infections due to multidrug-resistant bacteria. Crit. Care 18:R90. 10.1186/cc13858
    1. Del Bono V., Giacobbe D. R., Marchese A., Parisini A., Fucile C., Coppo E., et al. (2017). Meropenem for treating KPC-producing Klebsiella pneumoniae bloodstream infections: should we get to the PK/PD root of the paradox? Virulence 8 66–73. 10.1080/21505594.2016.1213476
    1. Dhillon S. (2018). Meropenem/vaborbactam: a review in complicated urinary tract infections. Drugs 78 1259–1270. 10.1007/s40265-018-0966-7
    1. Di Carlo P., Gulotta G., Casuccio A., Pantuso G., Raineri M., Farulla C. A., et al. (2013). KPC-3 Klebsiella pneumoniae ST258 clone infection in postoperative abdominal surgery patients in an intensive care setting: analysis of a case series of 30 patients. BMC Anesthesiol. 13:13. 10.1186/1471-2253-13-13
    1. Dupont H., Gaillot O., Goetgheluck A. S., Plassart C., Emond J. P., Lecuru M., et al. (2016). Molecular characterization of carbapenem-nonsusceptible Enterobacterial isolates collected during a prospective interregional survey in France and susceptibility to the novel ceftazidime-avibactam and aztreonam-avibactam combinations. Antimicrob. Agents Chemother. 60 215–221. 10.1128/AAC.01559-15
    1. Endimiani A., Hujer A. M., Perez F., Bethel C. R., Hujer K. M., Kroeger J., et al. (2009a). Characterization of blaKPC-containing Klebsiella pneumoniae isolates detected in different institutions in the Eastern USA. J. Antimicrob. Chemother. 63 427–437. 10.1093/jac/dkn547
    1. Endimiani A., Hujer K. M., Hujer A. M., Armstrong E. S., Choudhary Y., Aggen J. B., et al. (2009b). ACHN-490, a neoglycoside with potent in vitro activity against multidrug-resistant Klebsiella pneumoniae isolates. Antimicrob. Agents Chemother. 53 4504–4507. 10.1128/AAC.00556-09
    1. Falagas M. E., Karageorgopoulos D. E., Nordmann P. (2011). Therapeutic options for infections with Enterobacteriaceae producing carbapenem-hydrolyzing enzymes. Future Microbiol. 6 653–666. 10.2217/fmb.11.49
    1. Falagas M. E., Lourida P., Poulikakos P., Rafailidis P. I., Tansarli G. S. (2014). Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob. Agents Chemother. 58 654–663. 10.1128/AAC.01222-13
    1. Falcone M., Viale P., Tiseo G., Pai M. (2018). Pharmacokinetic drug evaluation of avibactam + ceftazidime for the treatment of hospital-acquired pneumonia. Expert Opin. Drug Metab. Toxicol. 14 331–340. 10.1080/17425255.2018.1434142
    1. Fredborg M., Sondergaard T. E., Wang M. (2017). Synergistic activities of meropenem double and triple combinations against carbapenemase-producing Enterobacteriaceae. Diagn. Microbiol. Infect. Dis. 88 355–360. 10.1016/j.diagmicrobio.2017.04.015
    1. Geng T. T., Xu X., Huang M. (2018). High-dose tigecycline for the treatment of nosocomial carbapenem-resistant Klebsiella pneumoniae bloodstream infections: a retrospective cohort study. Medicine 97:e9961. 10.1097/MD.0000000000009961
    1. Giacobbe D. R., Del Bono V., Trecarichi E. M., De Rosa F. G., Giannella M., Bassetti M., et al. (2015). Risk factors for bloodstream infections due to colistin-resistant KPC-producing Klebsiella pneumoniae: results from a multicenter case-control-control study. Clin. Microbiol. Infect. 21 1106.e1–1108.e1. 10.1016/j.cmi.2015.08.001
    1. Giannella M., Trecarichi E. M., Giacobbe D. R., De Rosa F. G., Bassetti M., Bartoloni A., et al. (2018). Effect of combination therapy containing a high-dose carbapenem on mortality in patients with carbapenem-resistant Klebsiella pneumoniae bloodstream infection. Int. J. Antimicrob. Agents. 51 244–248. 10.1016/j.ijantimicag.2017.08.019
    1. Gibson G. A., Bauer S. R., Neuner E. A., Bass S. N., Lam S. W. (2016). Influence of colistin dose on global cure in patients with bacteremia due to carbapenem-resistant Gram-negative bacilli. Antimicrob. Agents Chemother. 60 431–436. 10.1128/AAC.01414-15
    1. Goodman K. E., Simner P. J., Tamma P. D., Milstone A. M. (2016). Infection control implications of heterogeneous resistance mechanisms in carbapenem-resistant Enterobacteriaceae (CRE). Expert Rev. Anti Infect. Ther. 14 95–108. 10.1586/14787210.2016.1106940
    1. Gutierrez-Gutierrez B., Salamanca E., de Cueto M., Hsueh P. R., Viale P., Pano-Pardo J. R., et al. (2017). Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): a retrospective cohort study. Lancet Infect. Dis. 17 726–734. 10.1016/S1473-3099(17)30228-1
    1. Hackel M. A., Tsuji M., Yamano Y., Echols R., Karlowsky J. A., Sahm D. F. (2018). In vitro activity of the siderophore cephalosporin, cefiderocol, against carbapenem-nonsusceptible and multidrug-resistant isolates of Gram-negative bacilli collected worldwide in 2014 to 2016. Antimicrob. Agents Chemother. 62:e01968-17. 10.1128/AAC.01968-17
    1. Ito A., Nishikawa T., Matsumoto S., Yoshizawa H., Sato T., Nakamura R., et al. (2016). Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 60 7396–7401. 10.1128/AAC.01405-16
    1. Karaiskos I., Souli M., Giamarellou H. (2015). Plazomicin: an investigational therapy for the treatment of urinary tract infections. Expert Opin. Investig. Drugs 24 1501–1511. 10.1517/13543784.2015.1095180
    1. Karlowsky J. A., Lob S. H., Kazmierczak K. M., Young K., Motyl M. R., Sahm D. F. (2018). In vitro activity of imipenem-relebactam against clinical isolates of Gram-negative bacilli isolated in hospital laboratories in the United States as part of the SMART 2016 program. Antimicrob. Agents Chemother 62:e00169-18. 10.1128/AAC.00169-18
    1. Kaye K. S., Pogue J. M. (2015). Infections caused by resistant Gram-negative bacteria: epidemiology and management. Pharmacotherapy 35 949–962. 10.1002/phar.1636
    1. King M., Heil E., Kuriakose S., Bias T., Huang V., El-Beyrouty C., et al. (2017). Multicenter study of outcomes with ceftazidime-avibactam in patients with carbapenem-resistant Enterobacteriaceae infections. Antimicrob. Agents Chemother. 61:e00449-17. 10.1128/AAC.00449-17
    1. Kohanski M. A., Dwyer D. J., Collins J. J. (2010). How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 8 423–435. 10.1038/nrmicro2333
    1. Krapp F., Grant J. L., Sutton S. H., Ozer E. A., Barr V. O. (2017). Treating complicated carbapenem-resistant enterobacteriaceae infections with ceftazidime/avibactam: a retrospective study with molecular strain characterisation. Int. J. Antimicrob. Agents 49 770–773. 10.1016/j.ijantimicag.2017.01.018
    1. Ku Y. H., Chen C. C., Lee M. F., Chuang Y. C., Tang H. J., Yu W. L. (2017). Comparison of synergism between colistin, fosfomycin and tigecycline against extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates or with carbapenem resistance. J. Microbiol. Immunol. Infect. 50 931–939. 10.1016/j.jmii.2016.12.008
    1. Kumarasamy K. K., Toleman M. A., Walsh T. R., Bagaria J., Butt F., Balakrishnan R., et al. (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis. 10 597–602. 10.1016/S1473-3099(10)70143-2
    1. Landman D., Babu E., Shah N., Kelly P., Backer M., Bratu S., et al. (2010). Activity of a novel aminoglycoside, ACHN-490, against clinical isolates of Escherichia coli and Klebsiella pneumoniae from New York City. J. Antimicrob. Chemother. 65 2123–2127. 10.1093/jac/dkq278
    1. Lee C. M., Lai C. C., Chiang H. T., Lu M. C., Wang L. F., Tsai T. L., et al. (2017). Presence of multidrug-resistant organisms in the residents and environments of long-term care facilities in Taiwan. J. Microbiol. Immunol. Infect. 50 133–144. 10.1016/j.jmii.2016.12.001
    1. Livermore D. M., Mushtaq S., Warner M., Woodford N. (2016). In vitro activity of eravacycline against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii. Antimicrob. Agents Chemother. 60 3840–3844. 10.1128/AAC.00436-16
    1. Livermore D. M., Warner M., Mushtaq S., Doumith M., Zhang J., Woodford N. (2011). What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int. J. Antimicrob. Agents 37 415–419. 10.1016/j.ijantimicag.2011.01.012
    1. Lucasti C., Vasile L., Sandesc D., Venskutonis D., McLeroth P., Lala M., et al. (2016). Phase 2, dose-ranging study of relebactam with imipenem-cilastatin in subjects with complicated intra-abdominal infection. Antimicrob. Agents Chemother. 60 6234–6243. 10.1128/AAC.00633-16
    1. Machuca I., Gutierrez-Gutierrez B., Gracia-Ahufinger I., Rivera Espinar F., Cano A., Guzman-Puche J., et al. (2017). Mortality associated with bacteremia due to colistin-resistant Klebsiella pneumoniae with high-level meropenem resistance: importance of combination therapy without colistin and carbapenems. Antimicrob. Agents Chemother. 61:e00406-17. 10.1128/AAC.00406-17
    1. Marshall S., Hujer A. M., Rojas L. J., Papp-Wallace K. M., Humphries R. M., Spellberg B., et al. (2017). Can ceftazidime-avibactam and aztreonam overcome β-Lactam resistance conferred by metallo-β-Lactamases in Enterobacteriaceae? Antimicrob. Agents Chemother. 61:e02243-16. 10.1128/AAC.02243-16
    1. Martin A., Fahrbach K., Zhao Q., Lodise T. (2018). Association between carbapenem resistance and mortality among adult, hospitalized patients with serious infections due to Enterobacteriaceae: results of a systematic literature review and meta-analysis. Open Forum Infect. Dis. 5:ofy150. 10.1093/ofid/ofy150
    1. Mashni O., Nazer L., Le J. (2018). Critical review of double-carbapenem therapy for the treatment of carbapenemase-producing Klebsiella pneumoniae. Ann. Pharmacother. 10.1177/1060028018790573 [Epub ahead of print]
    1. McKinnell J. A., Connolly L. E., Pushkin R., Jubb A. M., O’Keeffe B., Serio A. W., et al. (2017). Improved outcomes with plazomicin (PLZ) compared with colistin (CST) in patients with bloodstream infections (BSI) caused by carbapenem-resistant Enterobacteriaceae (CRE): results from the CARE Study. Open Forum Infect. Dis. 4 S531–S531. 10.1093/ofid/ofx163.1383
    1. Munoz-Price L. S., Poirel L., Bonomo R. A., Schwaber M. J., Daikos G. L., Cormican M., et al. (2013). Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect. Dis. 13 785–796. 10.1016/S1473-3099(13)70190-7
    1. Navarro-San Francisco C., Mora-Rillo M., Romero-Gomez M. P., Moreno-Ramos F., Rico-Nieto A., Ruiz-Carrascoso G., et al. (2013). Bacteraemia due to OXA-48-carbapenemase-producing Enterobacteriaceae: a major clinical challenge. Clin. Microbiol. Infect. 19 E72–E79. 10.1111/1469-0691.12091
    1. Nelson K., Hemarajata P., Sun D., Rubio-Aparicio D., Tsivkovski R., Yang S., et al. (2017). Resistance to ceftazidime-avibactam is due to transposition of KPC in a porin-deficient strain of Klebsiella pneumoniae with increased efflux activity. Antimicrob. Agents Chemother. 61:e00989-17. 10.1128/AAC.00989-17
    1. Ni W., Cai X., Wei C., Di X., Cui J., Wang R., et al. (2015). Efficacy of polymyxins in the treatment of carbapenem-resistant Enterobacteriaceae infections: a systematic review and meta-analysis. Braz. J. Infect. Dis. 19 170–180. 10.1016/j.bjid.2014.12.004
    1. Ni W., Han Y., Liu J., Wei C., Zhao J., Cui J., et al. (2016). Tigecycline treatment for carbapenem-resistant Enterobacteriaceae infections: a systematic review and meta-analysis. Medicine 95:e3126. 10.1097/MD.0000000000003126
    1. Oliva A., Scorzolini L., Castaldi D., Gizzi F., De Angelis M., Storto M., et al. (2017a). Double-carbapenem regimen, alone or in combination with colistin, in the treatment of infections caused by carbapenem-resistant Klebsiella pneumoniae (CR-Kp). J. Infect. 74 103–106. 10.1016/j.jinf.2016.10.002
    1. Oliva A., Scorzolini L., Cipolla A., Mascellino M. T., Cancelli F., Castaldi D., et al. (2017b). In vitro evaluation of different antimicrobial combinations against carbapenemase-producing Klebsiella pneumoniae: the activity of the double-carbapenem regimen is related to meropenem MIC value. J. Antimicrob. Chemother. 72 1981–1984. 10.1093/jac/dkx084
    1. Papadimitriou-Olivgeris M., Fligou F., Bartzavali C., Zotou A., Spyropoulou A., Koutsileou K., et al. (2017). Carbapenemase-producing Klebsiella pneumoniae bloodstream infection in critically ill patients: risk factors and predictors of mortality. Eur. J. Clin. Microbiol. Infect. Dis. 36 1125–1131. 10.1007/s10096-017-2899-6
    1. Paul M., Daikos G. L., Durante-Mangoni E., Yahav D., Carmeli Y., Benattar Y. D., et al. (2018). Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. Lancet Infect. Dis. 18 391–400. 10.1016/S1473-3099(18)30099-9
    1. Petty L. A., Henig O., Patel T. S., Pogue J. M., Kaye K. S. (2018). Overview of meropenem-vaborbactam and newer antimicrobial agents for the treatment of carbapenem-resistant Enterobacteriaceae. Infect. Drug Resist. 11 1461–1472. 10.2147/IDR.S150447
    1. Pfaller M. A., Huband M. D., Mendes R. E., Flamm R. K., Castanheira M. (2018). In vitro activity of meropenem/vaborbactam and characterisation of carbapenem resistance mechanisms among carbapenem-resistant Enterobacteriaceae from the 2015 meropenem/vaborbactam surveillance programme. Int. J. Antimicrob. Agents 52 144–150. 10.1016/j.ijantimicag.2018.02.021
    1. Poirel L., Kieffer N., Nordmann P. (2016). In vitro evaluation of dual carbapenem combinations against carbapenemase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 71 156–161. 10.1093/jac/dkv294
    1. Psichogiou M., Tassios P. T., Avlamis A., Stefanou I., Kosmidis C., Platsouka E., et al. (2008). Ongoing epidemic of blaVIM-1-positive Klebsiella pneumoniae in Athens, Greece: a prospective survey. J. Antimicrob. Chemother. 61 59–63. 10.1093/jac/dkm443
    1. Qi Y., Wei Z., Ji S., Du X., Shen P., Yu Y. (2011). ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J. Antimicrob. Chemother. 66 307–312. 10.1093/jac/dkq431
    1. Qureshi Z. A., Paterson D. L., Potoski B. A., Kilayko M. C., Sandovsky G., Sordillo E., et al. (2012). Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrob. Agents Chemother. 56 2108–2113. 10.1128/AAC.06268-11
    1. Rodriguez-Bano J., Gutierrez-Gutierrez B., Machuca I., Pascual A. (2018). Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin. Microbiol. Rev. 31:e00079-17. 10.1128/CMR.00079-17
    1. Saisho Y., Katsube T., White S., Fukase H., Shimada J. (2018). Pharmacokinetics, safety, and tolerability of cefiderocol, a novel siderophore cephalosporin for Gram-negative bacteria, in healthy subjects. Antimicrob. Agents Chemother. 62:e02163-17. 10.1128/AAC.02163-17
    1. Sbrana F., Malacarne P., Viaggi B., Costanzo S., Leonetti P., Leonildi A., et al. (2013). Carbapenem-sparing antibiotic regimens for infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae in intensive care unit. Clin. Infect. Dis. 56 697–700. 10.1093/cid/cis969
    1. Sheu C. C., Lin S. Y., Chang Y. T., Lee C. Y., Chen Y. H., Hsueh P. R. (2018). Management of infections caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae: current evidence and future prospects. Expert Rev. Anti Infect. Ther. 16 205–218. 10.1080/14787210.2018.1436966
    1. Shields R. K., Chen L., Cheng S., Chavda K. D., Press E. G., Snyder A., et al. (2017a). Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob. Agents Chemother. 61:e02097-16. 10.1128/AAC.02097-16
    1. Shields R. K., Potoski B. A., Haidar G., Hao B., Doi Y., Chen L., et al. (2016). Clinical outcomes, drug toxicity, and emergence of ceftazidime-avibactam resistance among patients treated for carbapenem-resistant Enterobacteriaceae infections. Clin. Infect. Dis. 63 1615–1618. 10.1093/cid/ciw636
    1. Shields R. K., Nguyen M. H., Chen L., Press E. G., Potoski B. A., Marini R. V., et al. (2017b). Ceftazidime-avibactam is superior to other treatment regimens against carbapenem-resistant Klebsiella pneumoniae Bacteremia. Antimicrob. Agents Chemother. 61:e00883-17. 10.1128/AAC.00883-17
    1. Sims M., Mariyanovski V., McLeroth P., Akers W., Lee Y. C., Brown M. L., et al. (2017). Prospective, randomized, double-blind, Phase 2 dose-ranging study comparing efficacy and safety of imipenem/cilastatin plus relebactam with imipenem/cilastatin alone in patients with complicated urinary tract infections. J. Antimicrob. Chemother. 72 2616–2626. 10.1093/jac/dkx139
    1. Solomkin J., Evans D., Slepavicius A., Lee P., Marsh A., Tsai L., et al. (2017). Assessing the efficacy and safety of eravacycline vs ertapenem in complicated intra-abdominal infections in the investigating Gram-negative infections treated with eravacycline (IGNITE 1) trial: a randomized clinical trial. JAMA Surg. 152 224–232. 10.1001/jamasurg.2016.4237
    1. Souli M., Karaiskos I., Masgala A., Galani L., Barmpouti E., Giamarellou H. (2017). Double-carbapenem combination as salvage therapy for untreatable infections by KPC-2-producing Klebsiella pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis. 36 1305–1315. 10.1007/s10096-017-2936-5
    1. Souli M., Konstantinidou E., Tzepi I., Tsaganos T., Pefanis A., Chryssouli Z., et al. (2011). Efficacy of carbapenems against a metallo-beta-lactamase-producing Escherichia coli clinical isolate in a rabbit intra-abdominal abscess model. J. Antimicrob. Chemother. 66 611–617. 10.1093/jac/dkq470
    1. Sutcliffe J. A., O’Brien W., Fyfe C., Grossman T. H. (2013). Antibacterial activity of eravacycline (TP-434), a novel fluorocycline, against hospital and community pathogens. Antimicrob. Agents Chemother. 57 5548–5558. 10.1128/AAC.01288-13
    1. Syue L. S., Chen Y. H., Ko W. C., Hsueh P. R. (2016). New drugs for the treatment of complicated intra-abdominal infections in the era of increasing antimicrobial resistance. Int. J. Antimicrob. Agents 47 250–258. 10.1016/j.ijantimicag.2015.12.021
    1. Tamma P. D., Simner P. J. (2018). Phenotypic detection of carbapenemase-producing organisms from clinical isolates. J. Clin. Microbiol. 56:e01140. 10.1128/JCM.01140-18
    1. Tang H. J., Lai C. C., Chen C. C., Zhang C. C., Weng T. C., Chiu Y. H., et al. (2016). Colistin-sparing regimens against Klebsiella pneumoniae carbapenemase-producing K. pneumoniae isolates: combination of tigecycline or doxycycline and gentamicin or amikacin. J. Microbiol. Immunol. Infect. 10.1016/j.jmii.2016.03.003 [Epub ahead of print]
    1. Temkin E., Torre-Cisneros J., Beovic B., Benito N., Giannella M., Gilarranz R., et al. (2017). Ceftazidime-avibactam as salvage therapy for infections caused by carbapenem-resistant organisms. Antimicrob. Agents Chemother. 61:e01964-16. 10.1128/AAC.01964-16
    1. Thaden J. T., Pogue J. M., Kaye K. S. (2017). Role of newer and re-emerging older agents in the treatment of infections caused by carbapenem-resistant Enterobacteriaceae. Virulence 8 403–416. 10.1080/21505594.2016.1207834
    1. Ting S. W., Lee C. H., Liu J. W. (2018). Risk factors and outcomes for the acquisition of carbapenem-resistant Gram-negative bacillus bacteremia: a retrospective propensity-matched case control study. J. Microbiol. Immunol. Infect. 51 621–628. 10.1016/j.jmii.2016.08.022
    1. Tofas P., Skiada A., Angelopoulou M., Sipsas N., Pavlopoulou I., Tsaousi S., et al. (2016). Carbapenemase-producing Klebsiella pneumoniae bloodstream infections in neutropenic patients with haematological malignancies or aplastic anaemia: analysis of 50 cases. Int. J. Antimicrob. Agents 47 335–339. 10.1016/j.ijantimicag.2016.01.011
    1. Trecarichi E. M., Pagano L., Martino B., Candoni A., Di Blasi R., Nadali G., et al. (2016). Bloodstream infections caused by Klebsiella pneumoniae in onco-hematological patients: clinical impact of carbapenem resistance in a multicentre prospective survey. Am. J. Hematol. 91 1076–1081. 10.1002/ajh.24489
    1. Trecarichi E. M., Tumbarello M. (2017). Therapeutic options for carbapenem-resistant Enterobacteriaceae infections. Virulence 8 470–484. 10.1080/21505594.2017.1292196
    1. Tseng S. P., Wang S. F., Ma L., Wang T. Y., Yang T. Y., Siu L. K., et al. (2017). The plasmid-mediated fosfomycin resistance determinants and synergy of fosfomycin and meropenem in carbapenem-resistant Klebsiella pneumoniae isolates in Taiwan. J. Microbiol. Immunol. Infect. 50 653–661. 10.1016/j.jmii.2017.03.003
    1. Tumbarello M., Trecarichi E. M., De Rosa F. G., Giannella M., Giacobbe D. R., Bassetti M., et al. (2015). Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J. Antimicrob. Chemother. 70 2133–2143. 10.1093/jac/dkv086
    1. Tumbarello M., Viale P., Viscoli C., Trecarichi E. M., Tumietto F., Marchese A., et al. (2012). Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin. Infect. Dis. 55 943–950. 10.1093/cid/cis588
    1. Tzouvelekis L. S., Markogiannakis A., Psichogiou M., Tassios P. T., Daikos G. L. (2012). Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin. Microbiol. Rev. 25 682–707. 10.1128/CMR.05035-11
    1. van Duin D., Lok J. J., Earley M., Cober E., Richter S. S., Perez F., et al. (2018). Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant Enterobacteriaceae. Clin. Infect. Dis. 66 163–171. 10.1093/cid/cix783
    1. Venugopalan V., Nogid B., Le T. N., Rahman S. M., Bias T. E. (2017). Double carbapenem therapy (DCT) for bacteremia due to carbapenem-resistant Klebsiella pneumoniae (CRKP): from test tube to clinical practice. Infect. Dis. 49 867–870. 10.1080/23744235.2017.1350880
    1. Walkty A., Adam H., Baxter M., Denisuik A., Lagace-Wiens P., Karlowsky J. A., et al. (2014). In vitro activity of plazomicin against 5,015 Gram-negative and Gram-positive clinical isolates obtained from patients in canadian hospitals as part of the CANWARD study, 2011-2012. Antimicrob. Agents Chemother. 58 2554–2563. 10.1128/AAC.02744-13
    1. Watkins R. R., Papp-Wallace K. M., Drawz S. M., Bonomo R. A. (2013). Novel beta-lactamase inhibitors: a therapeutic hope against the scourge of multidrug resistance. Front. Microbiol. 4:392. 10.3389/fmicb.2013.00392
    1. Wenzler E., Deraedt M. F., Harrington A. T., Danizger L. H. (2017). Synergistic activity of ceftazidime-avibactam and aztreonam against serine and metallo-β-lactamase-producing gram-negative pathogens. Diagn. Microbiol. Infect. Dis. 88 352–354. 10.1016/j.diagmicrobio.2017.05.009
    1. Willyard C. (2017). The drug-resistant bacteria that pose the greatest health threats. Nature 543:15. 10.1038/nature.2017.21550
    1. Wiskirchen D. E., Crandon J. L., Nicolau D. P. (2013). Impact of various conditions on the efficacy of dual carbapenem therapy against KPC-producing Klebsiella pneumoniae. Int. J. Antimicrob. Agents 41 582–585. 10.1016/j.ijantimicag.2013.02.015
    1. Wong D., van Duin D. (2017). Novel beta-lactamase inhibitors: unlocking their potential in therapy. Drugs 77 615–628. 10.1007/s40265-017-0725-1
    1. Wright H., Bonomo R. A., Paterson D. L. (2017). New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false dawn? Clin. Microbiol. Infect. 23 704–712. 10.1016/j.cmi.2017.09.001
    1. Wunderink R. G., Giamarellos-Bourboulis E. J., Rahav G., Mathers A. J., Bassetti M., Vazquez J., et al. (2018). Effect and safety of meropenem-vaborbactam versus best-available therapy in patients with carbapenem-resistant Enterobacteriaceae Infections: the TANGO II randomized clinical trial. Infect. Dis. Ther. 7 439–455. 10.1007/s40121-018-0214-1
    1. Yan J. J., Ko W. C., Tsai S. H., Wu H. M., Wu J. J. (2001). Outbreak of infection with multidrug-resistant Klebsiella pneumoniae carrying bla(IMP-8) in a university medical center in Taiwan. J. Clin. Microbiol. 39 4433–4439. 10.1128/JCM.39.12.4433-4439.2001
    1. Yang H., Chen G., Hu L., Liu Y., Cheng J., Ye Y., et al. (2018). Enhanced efficacy of imipenem-colistin combination therapy against multiple-drug-resistant Enterobacter cloacae: in vitro activity and a Galleria mellonella model. J. Microbiol. Immunol. Infect. 51 70–75. 10.1016/j.jmii.2016.01.003
    1. Zasowski E. J., Rybak J. M., Rybak M. J. (2015). The beta-lactams strike back: ceftazidime-avibactam. Pharmacotherapy 35 755–770. 10.1002/phar.1622
    1. Zavascki A. P., Klee B. O., Bulitta J. B. (2017). Aminoglycosides against carbapenem-resistant Enterobacteriaceae in the critically ill: the pitfalls of aminoglycoside susceptibility. Expert Rev. Anti Infect. Ther. 15 519–526. 10.1080/14787210.2017.1316193
    1. Zhanel G. G., Cheung D., Adam H., Zelenitsky S., Golden A., Schweizer F., et al. (2016). Review of eravacycline, a novel fluorocycline antibacterial agent. Drugs 76 567–588. 10.1007/s40265-016-0545-8
    1. Zhanel G. G., Lawrence C. K., Adam H., Schweizer F., Zelenitsky S., Zhanel M., et al. (2018). Imipenem-relebactam and meropenem-vaborbactam: two novel carbapenem-beta-lactamase inhibitor combinations. Drugs 78 65–98. 10.1007/s40265-017-0851-9
    1. Zhang Y., Lin X., Bush K. (2016). In vitro susceptibility of beta-lactamase-producing carbapenem-resistant Enterobacteriaceae (CRE) to eravacycline. J. Antibiot. 69 600–604. 10.1038/ja.2016.73
    1. Zusman O., Altunin S., Koppel F., Dishon Benattar Y., Gedik H., Paul M. (2017). Polymyxin monotherapy or in combination against carbapenem-resistant bacteria: systematic review and meta-analysis. J. Antimicrob. Chemother. 72 29–39. 10.1093/jac/dkw377

Source: PubMed

3
Tilaa