Static and Dynamic Measures of Human Brain Connectivity Predict Complementary Aspects of Human Cognitive Performance

Aurora I Ramos-Nuñez, Simon Fischer-Baum, Randi C Martin, Qiuhai Yue, Fengdan Ye, Michael W Deem, Aurora I Ramos-Nuñez, Simon Fischer-Baum, Randi C Martin, Qiuhai Yue, Fengdan Ye, Michael W Deem

Abstract

In cognitive network neuroscience, the connectivity and community structure of the brain network is related to measures of cognitive performance, like attention and memory. Research in this emerging discipline has largely focused on two measures of connectivity-modularity and flexibility-which, for the most part, have been examined in isolation. The current project investigates the relationship between these two measures of connectivity and how they make separable contribution to predicting individual differences in performance on cognitive tasks. Using resting state fMRI data from 52 young adults, we show that flexibility and modularity are highly negatively correlated. We use a Brodmann parcellation of the fMRI data and a sliding window approach for calculation of the flexibility. We also demonstrate that flexibility and modularity make unique contributions to explain task performance, with a clear result showing that modularity, not flexibility, predicts performance for simple tasks and that flexibility plays a greater role in predicting performance on complex tasks that require cognitive control and executive functioning. The theory and results presented here allow for stronger links between measures of brain network connectivity and cognitive processes.

Keywords: brain network connectivity; flexibility; individual differences; modularity; resting-state fMRI; task complexity.

Figures

Figure 1
Figure 1
(A) Flexibility calculation using a sliding window method with 40 time points. (B) For each window a correlation matrix was obtained. (C) Computation of the record of which module the ith Brodmann areas was in C1(t) at time point window t, 1≤t≤165. (D) Relabeling of the allegiance of Brodmann areas was done to account for the fact that the labeling of the modules can change between time points. This relabeling process was done to ensure that the difference defined as the number of areas that have Ci(t+1) ≠ Ci(t) (i = 1–84) was minimized. (E) A detail of the relabeling process is shown here. The red star indicates that the permutation for window (t+1) “2 1 3 1” is the closest to the window t labeling “2 1 3 3”. The relabelling process will choose the starred permutation for window (t+1).
Figure 2
Figure 2
(A) The relationship between modularity and flexibility across 52 participants. r = −0.78 (p < 0.001). The y-axis shows the averaged flexibility values over all Brodmann areas across subjects. The x-axis shows modularity values, the excess probability of connections within the modules, relative to what is expected at random (B) Illustration of flexibility measures over cortical structures. Brodmann areas with higher flexibility are shown in red and those with lower flexibility are shown in yellow.
Figure 3
Figure 3
Modularity and Flexibility predict different performance during simple and complex tasks. The two graphs on the left and right illustrate the relationship between simple and complex composite scores (calculated by summing the z-scores for the performance measures for the simple and complex tasks) and modularity (green) and flexibility (red). This relationship is represented by the magnitude of the coefficient between modularity and task performance and flexibility and task performance for simple (left) and complex (right). The center of the figure depicts the theoretical prediction relating performance to task complexity for individuals with high and low modularity (green curve) and flexibility (red curve).
Figure 4
Figure 4
Observed correlation between modularity and flexibility with 52 participants (black bar) compared with the distribution of the correlation between modularity and flexibility from simulations of an artificial network in which modularity is matched to the modularity values from the human subjects (white bars). The observed correlation falls well outside of the distribution of correlations from the random data.

References

    1. Alavash M., Hilgetag C. C., Thiel C. M., Gießing C. (2015). Persistency and flexibility of complex brain networks underlie dual-task interference. Hum. Brain Mapp. 36, 3542–3562. 10.1002/hbm.22861
    1. Allen E. A., Damaraju E., Plis S. M., Erhardt E. B., Eichele T., Calhoun V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24, 663–676. 10.1093/cercor/bhs352
    1. Aurich N. K., Filho J. O. A., da Silva A. M. M., Franco A. R. (2015). Evaluating the reliability of different preprocessing steps to estimate graph theoretical measures in resting state fMRI data. Front. Neurosci. 9:48. 10.3389/fnins.2015.00048
    1. Bassett D. S., Wymbs N. F., Porter M. A., Mucha P. J., Carlson J. M., Grafton S. T. (2010). Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. U.S.A. 108, 7641–7646. 10.1073/pnas.1018985108
    1. Bassett D. S., Wymbs N. F., Rombach M. P., Porter M. A., Mucha P. J., Grafton S. T. (2013). Task-based core-periphery organization of human brain dynamics. PLoS Comput. Biol. 10:e1003617 10.1371/journal.pcbi.1003617
    1. Bassett D. S., Yang M., Wymbs N. F., Grafton S. T. (2015). Learning-induced autonomy of sensorimotor systems. Nat. Neurosci. 18, 744–751. 10.1038/nn.3993
    1. Betzel R. F., Satterthwaite T. D., Gold J. I., Bassett D. S. (2016). A positive mood, a flexible brain. arXiv:1601.07881v1.
    1. Biswal B., Yetkin F. Z., Haughton V. M., Hyde J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541. 10.1002/mrm.1910340409
    1. Braun U., Schäfer A., Walter H., Erk S., Romanczuk-Seiferth N., Haddad L., et al. . (2015). Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc. Natl. Acad. Sci. U.S.A. 112, 11678–11683. 10.1073/pnas.1422487112
    1. Bullmore E., Bullmore E., Sporns O., Sporns O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198. 10.1038/nrn2575
    1. Chen M., Deem M. W. (2015). Development of modularity in the neural activity of children' s brains. Phys. Biol. 12:16009 10.1088/1478-3975/12/1/016009
    1. Ciric R., Wolf D. H., Power J. D., Roalf D. R., Baum G. L., Ruparel K., et al. . (2017). Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage 154, 174–187. 10.1016/j.neuroimage.2017.03.020
    1. Cohen J. R., D'Esposito M. (2016). The Segregation and integration of distinct brain networks and their relationship to cognition. J. Neurosci. 36, 12083–12094. 10.1523/JNEUROSCI.2965-15.2016
    1. Corbetta M., Shulman G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 215–229. 10.1038/nrn755
    1. Cordes D., Haughton V. M., Arfanakis K., Carew J. D., Turski P. A., Moritz C. H., et al. . (2001). Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am. J. Neuroradiol. 22, 1326–1333.
    1. Cowan N. (2000). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav. Brain Sci. 24, 87–185. 10.1017/S0140525X01003922
    1. Cox R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173. 10.1006/cbmr.1996.0014
    1. Craddock R. C., James G. A., Holtzheimer P. E., Hu X. P., Mayberg H. S. (2012). A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928. 10.1002/hbm.21333
    1. Deem M. W. (2013). Statistical mechanics of modularity and horizontal gene transfer. Annu. Rev. Condens. Matter Phys. 4, 287–311. 10.1146/annurev-conmatphys-030212-184316
    1. Fan J., McCandliss B. D., Sommer T., Raz A., Posner M. I. (2002). Testing the efficiency and independence of attentional networks. J. Cogn. Neurosci. 14, 340–347. 10.1162/089892902317361886
    1. Gawryluk J. R., Mazerolle E. L., D'Arcy R. C. N. (2014). Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions. Front. Neurosci. 8:239. 10.3389/fnins.2014.00239
    1. Glasser M. F., Coalson T. S., Robinson E. C., Hacker C. D., Harwell J., Yacoub E., et al. . (2016). A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178. 10.1038/nature18933
    1. Gordon E. M., Laumann T. O., Adeyemo B., Huckins J. F., Kelley W. M., Petersen S. E. (2016). Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 26, 288–303. 10.1093/cercor/bhu239
    1. Hallquist M. N., Hwang K., Luna B. (2013). The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Neuroimage 82, 208–225. 10.1016/j.neuroimage.2013.05.116
    1. Hindriks R., Adhikari M. H., Murayama Y., Ganzetti M., Mantini D., Logothetis N. K., et al. . (2016). Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? Neuroimage 127, 242–256. 10.1016/j.neuroimage.2015.11.055
    1. Hutchison R. M., Womelsdorf T., Allen E. A., Bandettini P. A., Calhoun V. D., Corbetta M., et al. . (2013). Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378. 10.1016/j.neuroimage.2013.05.079
    1. Jo H. J., Gotts S. J., Reynolds R. C., Bandettini P. A., Martin A., Cox R. W., et al. . (2013). Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI. J. Appl. Math. 2013:935154. 10.1155/2013/935154
    1. Kudela M., Harezlak J., Lindquist M. A. (2017). Assessing uncertainty in dynamic functional connectivity. Neuroimage 149, 165–177. 10.1016/j.neuroimage.2017.01.056
    1. Lancaster J. L., Woldorff M. G., Parsons L. M., Liotti M., Freitas C. S., Rainey L., et al. . (2000). Automated talairach atlas labels for functional brain mapping. Hum. Brain Mapp. 10, 120–131. 10.1002/1097-0193(200007)10:3<120::AID-HBM30>;2-8
    1. Leonardi N., Van De Ville D. (2015). On spurious and real fluctuations of dynamic functional connectivity during rest. Neuroimage 104, 430–436. 10.1016/j.neuroimage.2014.09.007
    1. Medaglia J. D., Lynall M.-E., Bassett D. S. (2015). Cognitive network neuroscience. J. Cogn. Neurosci. 27, 1471–1491. 10.1162/jocn_a_00810
    1. Meunier D., Fonlupt P., Saive A.-L., Plailly J., Ravel N., Royet J.-P. (2014). Modular structure of functional networks in olfactory memory. Neuroimage 95, 264–275. 10.1016/j.neuroimage.2014.03.041
    1. Mill R. D., Ito T., Cole M. W. (2017). From connectome to cognition: the search for mechanism in human functional brain networks. Neuroimage. [Epub ahead of print]. 10.1016/j.neuroimage.2017.01.060
    1. Mucha P. J., Richardson T., Macon K., Porter M. A., Onnela J.-P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876–878. 10.1126/science.1184819
    1. Mueller S., Wang D., Fox M. D., Yeo B. T. T., Sepulcre J., Sabuncu M. R., et al. . (2013). Individual variability in functional connectivity architecture of the human brain. Neuron 77, 586–595. 10.1016/j.neuron.2012.12.028
    1. Newman M. E. J. (2006). Modularity and community structure in networks. Proc. Natl. Acad. Sci. U.S.A. 103, 8577–8582. 10.1073/pnas.0601602103
    1. Nunnally J. C., Bernstein I. H. (1994). Psychometric Theory, 3rd Edn. New York, NY: McGraw-Hill.
    1. Power J. D., Cohen A. L., Nelson S. M., Wig G. S., Barnes K. A., Church J. A., et al. . (2011). Functional network organization of the human brain. Neuron 72, 665–678. 10.1016/j.neuron.2011.09.006
    1. Power J. D., Schlaggar B. L., Petersen S. E. (2015). Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage 105, 536–551. 10.1016/j.neuroimage.2014.10.044
    1. Redick T. S., Broadway J. M., Meier M. E., Kuriakose P. S., Unsworth N., Kane M. J., et al. (2012). Measuring working memory capacity with automated complex span tasks. Eur. J. Psychol. Assess. 28, 164–171. 10.1027/1015-5759/a000123
    1. Rougier N. P., Noelle D. C., Braver T. S., Cohen J. D., O'Reilly R. C. (2005). Prefrontal cortex and flexible cognitive control: rules without symbols. Proc. Natl. Acad. Sci. U.S.A. 102, 7338–7343. 10.1073/pnas.0502455102
    1. Shipstead Z., Lindsey D. R. B., Marshall R. L., Engle R. W. (2014). The mechanisms of working memory capacity: primary memory, secondary memory, and attention control. J. Mem. Lang. 72, 116–141. 10.1016/j.jml.2014.01.004
    1. Smolensky P., Mozer M. C., Rumelhart D. E. (1996). Mathematical perspective, in Mathematical Perspectives on Neural Networks, eds Smolensky P., Mozer M. C., Rumelhart D. E. (Mahwah, NJ: Lawrence Erlbaum Associates, Inc; ), 875.
    1. Sporns O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nat. Neurosci. 17, 652–660. 10.1038/nn.3690
    1. Stevens A. A., Tappon S. C., Garg A., Fair D. A. (2012). Functional brain network modularity captures inter- and intra-individual variation in working memory capacity. PLoS ONE 7:e30468. 10.1371/journal.pone.0030468
    1. Thompson W. H., Fransson P. (2015). The mean–variance relationship reveals two possible strategies for dynamic brain connectivity analysis in fMRI. Front. Hum. Neurosci. 9:398. 10.3389/fnhum.2015.00398
    1. Townsend J. T., Ashby F. G. (1985). Stochastic modeling of elementary psychological processes. Am. J. Psychol. 98, 480–484. 10.2307/1422636
    1. Unsworth N., Engle R. W. (2007). On the division of short-term and working memory: an examination of simple and complex span and their relation to higher order abilities. Psychol. Bull. 133, 1038–1066. 10.1037/0033-2909.133.6.1038
    1. Unsworth N., Heitz R. P., Schrock J. C., Engle R. W. (2005). An automated version of the operation span task. Behav. Res. Methods 37, 498–505. 10.3758/BF03192720
    1. Wig G. S., Schlaggar B. L., Petersen S. E. (2011). Concepts and principles in the analysis of brain networks. Ann. N. Y. Acad. Sci. 1224, 126–146. 10.1111/j.1749-6632.2010.05947.x
    1. Winer B. J., Brown D. R., Michels K. M. (1971). Statistical Principles in Experimental Design, Vol. 2. New York, NY: McGraw-Hill.
    1. Yue Q., Martin R., Fischer-Baum S., Ramos-Nuñez A., Ye F., Deem M. (2017). Brain modularity mediates the relation between task complexity and performance. J. Cogn. Neurosci. 29, 1532–1546. 10.1162/jocn_a_01142
    1. Zalesky A., Breakspear M. (2015). Towards a statistical test for functional connectivity dynamics. Neuroimage 114, 466–470. 10.1016/j.neuroimage.2015.03.047

Source: PubMed

3
Tilaa