Corticolimbic Modulation via Intermittent Theta Burst Stimulation as a Novel Treatment for Functional Movement Disorder: A Proof-of-Concept Study

Primavera A Spagnolo, Jacob Parker, Silvina Horovitz, Mark Hallett, Primavera A Spagnolo, Jacob Parker, Silvina Horovitz, Mark Hallett

Abstract

Neuroimaging studies suggest that corticolimbic dysfunctions, including increased amygdala reactivity to emotional stimuli and heightened fronto-amygdala coupling, play a central role in the pathophysiology of functional movement disorders (FMD). Transcranial magnetic stimulation (TMS) has the potential to probe and modulate brain networks implicated in neuropsychiatric disorders, including FMD. Therefore, the objective of this proof-of-concept study was to investigate the safety, tolerability and preliminary efficacy of fronto-amygdala neuromodulation via targeted left prefrontal intermittent theta burst stimulation (iTBS) on brain and behavioral manifestations of FMD. Six subjects with a clinically defined diagnosis of FMD received three open-label iTBS sessions per day for two consecutive study visits. Safety and tolerability were assessed throughout the trial. Amygdala reactivity to emotionally valenced stimuli presented during an fMRI task and fronto-amygdala connectivity at rest were evaluated at baseline and after each stimulation visit, together with subjective levels of arousal and valence in response to affective stimuli. The FMD symptom severity was assessed at baseline, during treatment and 24 h after the last iTBS session. Multiple doses of iTBS were well-tolerated by all participants. Intermittent TBS significantly decreased fronto-amygdala connectivity and influenced amygdala reactivity to emotional stimuli. These neurocircuitry changes were associated to a marked reduction in FMD symptom severity. Corticolimbic modulation via iTBS represents a promising treatment for FMD that warrants additional research.

Keywords: amygdala; corticolimbic connectivity; functional movement disorders; intermittent theta burst stimulation; neuromodulation; valence.

Conflict of interest statement

The authors declare no relevant conflict of interest. M.H. is an inventor of patents held by NIH for an immunotoxin for the treatment of focal movement disorders and the H-coil for magnetic stimulation; in relation to the latter, he received license fee payments from the NIH (from Brainsway). He is on the medical advisory boards of CALA Health and Brainsway (both unpaid positions). He is on the editorial board of approximately 15 journals and receives royalties and/or honoraria from publishing from Cambridge University Press, Oxford University Press, Springer, and Elsevier. He has research grants from Medtronic, Inc. for a study of DBS for dystonia and CALA Health for studies of a device to suppress tremor.

Figures

Figure 1
Figure 1
Schematic representation of the study design.
Figure 2
Figure 2
Individualized left dorsolateral prefrontal cortex targets.
Figure 3
Figure 3
Imaging results. Panel (A) shows changes in rsFC between the individualized DLPFC target and the left amygdala. The y axis represents changes in z-transformed region-to-region correlation strength as a result of iTBS. Panel (B) shows changes in the left amygdala reactivity to fearful to neutral (F–N) vs. happy–neutral (H–N) faces during the fMRI task. The y axis represents left amygdala beta values. Error bars represent SEM.
Figure 4
Figure 4
Changes in valence levels. Panel (A) shows an increase in positive valence ratings from Visit 1(V1) to Visit 3 (V3); panel (B) shows a decrease in valence ratings in response to fearful faces from V1 to V3. Participants received iTBS (3 daily session) on V2 and V3.
Figure 5
Figure 5
Changes in Simplified-Functional Movement Disorder Rating Scale (S-FMDRS) scores.

References

    1. Stone J., Carson A., Duncan R., Roberts R., Warlow C., Hibberd C., Coleman R., Cull R., Murray G., Pelosi A., et al. Who Is Referred to Neurology Clinics?—The Diagnoses Made in 3781 New Patients. Clin. Neurol. Neurosurg. 2010;112:747–751. doi: 10.1016/j.clineuro.2010.05.011.
    1. Espay A.J., Aybek S., Carson A., Edwards M.J., Goldstein L.H., Hallett M., LaFaver K., LaFrance W.C., Lang A.E., Nicholson T., et al. Current Concepts in Diagnosis and Treatment of Functional Neurological Disorders. JAMA Neurol. 2018;75:1132–1141. doi: 10.1001/jamaneurol.2018.1264.
    1. Drane D.L., Fani N., Hallett M., Khalsa S.S., Perez D.L., Roberts N.A. A Framework for Understanding the Pathophysiology of Functional Neurological Disorder. CNS Spectr. 2020:1–7. doi: 10.1017/S1092852920001789.
    1. Voon V., Cavanna A.E., Coburn K., Sampson S., Reeve A., LaFrance W.C. Functional Neuroanatomy and Neurophysiology of Functional Neurological Disorders (Conversion Disorder) J. Neuropsychiatry Clin. Neurosci. 2016;28:168–190. doi: 10.1176/appi.neuropsych.14090217.
    1. Perez D.L., Dworetzky B.A., Dickerson B.C., Leung L., Cohn R., Baslet G., Silbersweig D.A. An Integrative Neurocircuit Perspective on Psychogenic Nonepileptic Seizures and Functional Movement Disorders: Neural Functional Unawareness. Clin. EEG Neurosci. 2015;46:4–15. doi: 10.1177/1550059414555905.
    1. Demartini B., Nisticò V., Edwards M.J., Gambini O., Priori A. The Pathophysiology of Functional Movement Disorders. Neurosci. Biobehav. Rev. 2020;120:387–400. doi: 10.1016/j.neubiorev.2020.10.019.
    1. Pick S., Goldstein L.H., Perez D.L., Nicholson T.R. Emotional Processing in Functional Neurological Disorder: A Review, Biopsychosocial Model and Research Agenda. J. Neurol. Neurosurg. Psychiatry. 2019;90:704–711. doi: 10.1136/jnnp-2018-319201.
    1. Morris L.S., To B., Baek K., Chang-Webb Y.-C., Mitchell S., Strelchuk D., Mikheenko Y., Phillips W., Zandi M., Jenaway A., et al. Disrupted Avoidance Learning in Functional Neurological Disorder: Implications for Harm Avoidance Theories. NeuroImage Clin. 2017;16:286–294. doi: 10.1016/j.nicl.2017.08.007.
    1. Voon V., Brezing C., Gallea C., Ameli R., Roelofs K., LaFrance W.C., Hallett M. Emotional Stimuli and Motor Conversion Disorder. Brain. 2010;133:1526–1536. doi: 10.1093/brain/awq054.
    1. Aybek S., Nicholson T.R., O’Daly O., Zelaya F., Kanaan R.A., David A.S. Emotion-Motion Interactions in Conversion Disorder: An FMRI Study. PLoS ONE. 2015;10:e0123273. doi: 10.1371/journal.pone.0123273.
    1. Faul L., Knight L., Espay A., Depue B., LaFaver K. Neural Activity in Functional Movement Disorders after Inpatient Rehabilitation. Psychiatry Res. Neuroimaging. 2020;303:111125. doi: 10.1016/j.pscychresns.2020.111125.
    1. Espay A.J., Ries S., Maloney T., Vannest J., Neefus E., Dwivedi A.K., Allendorfer J.B., Wulsin L.R., LaFrance W.C., Lang A.E., et al. Clinical and Neural Responses to Cognitive Behavioral Therapy for Functional Tremor. Neurology. 2019;93:e1787. doi: 10.1212/WNL.0000000000008442.
    1. Hallett M. Transcranial Magnetic Stimulation and the Human Brain. Nature. 2000;406:147–150. doi: 10.1038/35018000.
    1. Lantrip C., Gunning F.M., Flashman L., Roth R.M., Holtzheimer P.E. Effects of Transcranial Magnetic Stimulation on the Cognitive Control of Emotion: Potential Antidepressant Mechanisms. J. ECT. 2017;33:73–80. doi: 10.1097/YCT.0000000000000386.
    1. Gersner R., Kravetz E., Feil J., Pell G., Zangen A. Long-Term Effects of Repetitive Transcranial Magnetic Stimulation on Markers for Neuroplasticity: Differential Outcomes in Anesthetized and Awake Animals. J. Neurosci. Off. J. Soc. Neurosci. 2011;31:7521–7526. doi: 10.1523/JNEUROSCI.6751-10.2011.
    1. Taib S., Ory-Magne F., Brefel-Courbon C., Moreau Y., Thalamas C., Arbus C., Simonetta-Moreau M. Repetitive Transcranial Magnetic Stimulation for Functional Tremor: A Randomized, Double-Blind, Controlled Study. Mov. Disord. Off. J. Mov. Disord. Soc. 2019;34:1210–1219. doi: 10.1002/mds.27727.
    1. Garcin B., Mesrati F., Hubsch C., Mauras T., Iliescu I., Naccache L., Vidailhet M., Roze E., Degos B. Impact of Transcranial Magnetic Stimulation on Functional Movement Disorders: Cortical Modulation or a Behavioral Effect? Front. Neurol. 2017;8:338. doi: 10.3389/fneur.2017.00338.
    1. Shah B.B., Chen R., Zurowski M., Kalia L.V., Gunraj C., Lang A.E. Repetitive Transcranial Magnetic Stimulation plus Standardized Suggestion of Benefit for Functional Movement Disorders: An Open Label Case Series. Parkinsonism Relat. Disord. 2015;21:407–412. doi: 10.1016/j.parkreldis.2015.01.013.
    1. Pollak T.A., Nicholson T.R., Edwards M.J., David A.S. A Systematic Review of Transcranial Magnetic Stimulation in the Treatment of Functional (Conversion) Neurological Symptoms. J. Neurol. Neurosurg. Psychiatry. 2014;85:191–197. doi: 10.1136/jnnp-2012-304181.
    1. Dumitru A., Rocchi L., Saini F., Rothwell J.C., Roiser J.P., David A.S., Richieri R.M., Lewis G., Lewis G. Influence of Theta-Burst Transcranial Magnetic Stimulation over the Dorsolateral Prefrontal Cortex on Emotion Processing in Healthy Volunteers. Cogn. Affect. Behav. Neurosci. 2020;20:1278–1293. doi: 10.3758/s13415-020-00834-0.
    1. Ironside M., Browning M., Ansari T.L., Harvey C.J., Sekyi-Djan M.N., Bishop S.J., Harmer C.J., O’Shea J. Effect of Prefrontal Cortex Stimulation on Regulation of Amygdala Response to Threat in Individuals with Trait Anxiety: A Randomized Clinical Trial. JAMA Psychiatry. 2019;76:71–78. doi: 10.1001/jamapsychiatry.2018.2172.
    1. Balconi M., Ferrari C. Emotional Memory Retrieval. RTMS Stimulation on Left DLPFC Increases the Positive Memories. Brain Imaging Behav. 2012;6:454–461. doi: 10.1007/s11682-012-9163-6.
    1. De Raedt R., Leyman L., Baeken C., Van Schuerbeek P., Luypaert R., Vanderhasselt M.-A., Dannlowski U. Neurocognitive Effects of HF-RTMS over the Dorsolateral Prefrontal Cortex on the Attentional Processing of Emotional Information in Healthy Women: An Event-Related FMRI Study. Biol. Psychol. 2010;85:487–495. doi: 10.1016/j.biopsycho.2010.09.015.
    1. Vanderhasselt M.-A., De Raedt R., Leyman L., Baeken C. Acute Effects of Repetitive Transcranial Magnetic Stimulation on Attentional Control Are Related to Antidepressant Outcomes. J. Psychiatry Neurosci. 2009;34:119–126.
    1. Singh A., Erwin-Grabner T., Sutcliffe G., Paulus W., Dechent P., Antal A., Goya-Maldonado R. Default Mode Network Alterations after Intermittent Theta Burst Stimulation in Healthy Subjects. Transl. Psychiatry. 2020;10:75. doi: 10.1038/s41398-020-0754-5.
    1. Iwabuchi S.J., Raschke F., Auer D.P., Liddle P.F., Lankappa S.T., Palaniyappan L. Targeted Transcranial Theta-Burst Stimulation Alters Fronto-Insular Network and Prefrontal GABA. NeuroImage. 2017;146:395–403. doi: 10.1016/j.neuroimage.2016.09.043.
    1. Liston C., Chen A.C., Zebley B.D., Drysdale A.T., Gordon R., Leuchter B., Voss H.U., Casey B.J., Etkin A., Dubin M.J. Default Mode Network Mechanisms of Transcranial Magnetic Stimulation in Depression. Biol. Psychiatry. 2014;76:517–526. doi: 10.1016/j.biopsych.2014.01.023.
    1. Dunlop K., Woodside B., Olmsted M., Colton P., Giacobbe P., Downar J. Reductions in Cortico-Striatal Hyperconnectivity Accompany Successful Treatment of Obsessive-Compulsive Disorder with Dorsomedial Prefrontal RTMS. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2016;41:1395–1403. doi: 10.1038/npp.2015.292.
    1. Williams D.T., Ford B., Fahn S. Phenomenology and Psychopathology Related to Psychogenic Movement Disorders. Adv. Neurol. 1995;65:231–257.
    1. Lefaucheur J.-P., André-Obadia N., Antal A., Ayache S.S., Baeken C., Benninger D.H., Cantello R.M., Cincotta M., de Carvalho M., De Ridder D., et al. Evidence-Based Guidelines on the Therapeutic Use of Repetitive Transcranial Magnetic Stimulation (RTMS) Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2014;125:2150–2206. doi: 10.1016/j.clinph.2014.05.021.
    1. Rossi S., Hallett M., Rossini P.M., Pascual-Leone A. Safety of TMS Consensus Group Safety, Ethical Considerations, and Application Guidelines for the Use of Transcranial Magnetic Stimulation in Clinical Practice and Research. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2009;120:2008–2039. doi: 10.1016/j.clinph.2009.08.016.
    1. First M., Spitzer R., Gibbon M., Williams J. Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition (SCID-I/P) NYBiometrics Research, New York State Psychiatric Institute; New York, NY, USA: 2002.
    1. Bradley M.M., Lang P.J. Measuring Emotion: The Self-Assessment Manikin and the Semantic Differential. J. Behav. Ther. Exp. Psychiatry. 1994;25:49–59. doi: 10.1016/0005-7916(94)90063-9.
    1. Nielsen G., Ricciardi L., Meppelink A.M., Holt K., Teodoro T., Edwards M. A Simplified Version of the Psychogenic Movement Disorders Rating Scale: The Simplified Functional Movement Disorders Rating Scale (S-FMDRS) Mov. Disord. Clin. Pract. 2017;4:710–716. doi: 10.1002/mdc3.12475.
    1. Tran V. Positive Affect Negative Affect Scale (PANAS) In: Gellman M.D., Turner J.R., editors. Encyclopedia of Behavioral Medicine. Springer; New York, NY, USA: 2013. pp. 1508–1509.
    1. Young R.C., Biggs J.T., Ziegler V.E., Meyer D.A. A Rating Scale for Mania: Reliability, Validity and Sensitivity. Br. J. Psychiatry J. Ment. Sci. 1978;133:429–435. doi: 10.1192/bjp.133.5.429.
    1. Awiszus F. TMS and Threshold Hunting. Suppl. Clin. Neurophysiol. 2003;56:13–23. doi: 10.1016/s1567-424x(09)70205-3.
    1. Tse N.Y., Goldsworthy M.R., Ridding M.C., Coxon J.P., Fitzgerald P.B., Fornito A., Rogasch N.C. The Effect of Stimulation Interval on Plasticity Following Repeated Blocks of Intermittent Theta Burst Stimulation. Sci. Rep. 2018;8:8526. doi: 10.1038/s41598-018-26791-w.
    1. Fox M.D., Buckner R.L., White M.P., Greicius M.D., Pascual-Leone A. Efficacy of Transcranial Magnetic Stimulation Targets for Depression Is Related to Intrinsic Functional Connectivity with the Subgenual Cingulate. Biol. Psychiatry. 2012;72:595–603. doi: 10.1016/j.biopsych.2012.04.028.
    1. Cox R.W. AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance Neuroimages. Comput. Biomed. Res. Int. J. 1996;29:162–173. doi: 10.1006/cbmr.1996.0014.
    1. Amunts K., Kedo O., Kindler M., Pieperhoff P., Mohlberg H., Shah N.J., Habel U., Schneider F., Zilles K. Cytoarchitectonic Mapping of the Human Amygdala, Hippocampal Region and Entorhinal Cortex: Intersubject Variability and Probability Maps. Anat. Embryol. 2005;210:343–352. doi: 10.1007/s00429-005-0025-5.
    1. To W.T., De Ridder D., Hart J., Vanneste S. Changing Brain Networks Through Non-Invasive Neuromodulation. Front. Hum. Neurosci. 2018;12:128. doi: 10.3389/fnhum.2018.00128.
    1. Beynel L., Campbell E., Naclerio M., Galla J.T., Ghosal A., Michael A.M., Kimbrel N.A., Davis S.W., Appelbaum L.G. The Effects of Functionally Guided, Connectivity-Based RTMS on Amygdala Activation. Brain Sci. 2021;11:494. doi: 10.3390/brainsci11040494.
    1. Baas D., Aleman A., Kahn R.S. Lateralization of Amygdala Activation: A Systematic Review of Functional Neuroimaging Studies. Brain Res. Brain Res. Rev. 2004;45:96–103. doi: 10.1016/j.brainresrev.2004.02.004.
    1. Stujenske J.M., Likhtik E. Fear from the Bottom Up. Nat. Neurosci. 2017;20:765–767. doi: 10.1038/nn.4578.
    1. Blakemore R.L., Sinanaj I., Galli S., Aybek S., Vuilleumier P. Aversive Stimuli Exacerbate Defensive Motor Behaviour in Motor Conversion Disorder. Neuropsychologia. 2016;93:229–241. doi: 10.1016/j.neuropsychologia.2016.11.005.
    1. Balderston N.L., Beydler E.M., Roberts C., Deng Z.-D., Radman T., Lago T., Luber B., Lisanby S.H., Ernst M., Grillon C. Mechanistic Link between Right Prefrontal Cortical Activity and Anxious Arousal Revealed Using Transcranial Magnetic Stimulation in Healthy Subjects. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2020;45:694–702. doi: 10.1038/s41386-019-0583-5.
    1. Philip N.S., Barredo J., van ’t Wout-Frank M., Tyrka A.R., Price L.H., Carpenter L.L. Network Mechanisms of Clinical Response to Transcranial Magnetic Stimulation in Posttraumatic Stress Disorder and Major Depressive Disorder. Biol. Psychiatry. 2018;83:263–272. doi: 10.1016/j.biopsych.2017.07.021.
    1. Moreno-Ortega M., Kangarlu A., Lee S., Perera T., Kangarlu J., Palomo T., Glasser M.F., Javitt D.C. Parcel-Guided RTMS for Depression. Transl. Psychiatry. 2020;10:283. doi: 10.1038/s41398-020-00970-8.
    1. Hamilton M. The Assessment of Anxiety States by Rating. Br. J. Med. Psychol. 1959;32:50–55. doi: 10.1111/j.2044-8341.1959.tb00467.x.
    1. Gonzalez J.S., Shreck E., Batchelder A. Hamilton Rating Scale for Depression (HAM-D) In: Gellman M.D., Turner J.R., editors. Encyclopedia of Behavioral Medicine. Springer; New York, NY, USA: 2013. pp. 887–888.
    1. McNair D.M., Lorr M., Droppleman L.F. Profile of Mood States. Educational and Industrial Testing Service; San Diego, CA, USA: 1971. Educational and Industrial Testing Service.
    1. Posner K., Brown G.K., Stanley B., Brent D.A., Yershova K.V., Oquendo M.A., Currier G.W., Melvin G.A., Greenhill L., Shen S., et al. The Columbia-Suicide Severity Rating Scale: Initial Validity and Internal Consistency Findings from Three Multisite Studies with Adolescents and Adults. Am. J. Psychiatry. 2011;168:1266–1277. doi: 10.1176/appi.ajp.2011.10111704.
    1. Derogatis L.R., Unger R. The Corsini Encyclopedia of Psychology. American Cancer Society; Atlanta, GA, USA: 2010. Symptom Checklist-90-Revised; pp. 1–2.
    1. Bernstein D.P., Fink L., Handelsman L., Foote J., Lovejoy M., Wenzel K., Sapareto E., Ruggiero J. Initial Reliability and Validity of a New Retrospective Measure of Child Abuse and Neglect. Am. J. Psychiatry. 1994;151:1132–1136. doi: 10.1176/ajp.151.8.1132.
    1. Kubany E.S., Leisen M.B., Kaplan A.S., Watson S.B., Haynes S.N., Owens J.A., Burns K. Development and Preliminary Validation of a Brief Broad-Spectrum Measure of Trauma Exposure: The Traumatic Life Events Questionnaire. Psychol. Assess. 2000;12:210–224. doi: 10.1037/1040-3590.12.2.210.
    1. Lundqvist D., Flykt A., Öhman A. The Karolinska Directed Emotional Faces—KDEF, CD ROM from Department of Clinical Neuroscience, Psychology Section. Karolinska Institute; Solnavagen, Sweden: 1998.
    1. Shirer W.R., Ryali S., Rykhlevskaia E., Menon V., Greicius M.D. Decoding Subject-Driven Cognitive States with Whole-Brain Connectivity Patterns. Cereb. Cortex. 2012;22:158–165. doi: 10.1093/cercor/bhr099.

Source: PubMed

3
Tilaa