Olfactory dysfunction predicts 5-year mortality in older adults

Jayant M Pinto, Kristen E Wroblewski, David W Kern, L Philip Schumm, Martha K McClintock, Jayant M Pinto, Kristen E Wroblewski, David W Kern, L Philip Schumm, Martha K McClintock

Abstract

Prediction of mortality has focused on disease and frailty, although antecedent biomarkers may herald broad physiological decline. Olfaction, an ancestral chemical system, is a strong candidate biomarker because it is linked to diverse physiological processes. We sought to determine if olfactory dysfunction is a harbinger of 5-year mortality in the National Social Life, Health and Aging Project [NSHAP], a nationally representative sample of older U.S. adults. 3,005 community-dwelling adults aged 57-85 were studied in 2005-6 (Wave 1) and their mortality determined in 2010-11 (Wave 2). Olfactory dysfunction, determined objectively at Wave 1, was used to estimate the odds of 5-year, all cause mortality via logistic regression, controlling for demographics and health factors. Mortality for anosmic older adults was four times that of normosmic individuals while hyposmic individuals had intermediate mortality (p<0.001), a "dose-dependent" effect present across the age range. In a comprehensive model that included potential confounding factors, anosmic older adults had over three times the odds of death compared to normosmic individuals (OR, 3.37 [95%CI 2.04, 5.57]), higher than and independent of known leading causes of death, and did not result from the following mechanisms: nutrition, cognitive function, mental health, smoking and alcohol abuse or frailty. Olfactory function is thus one of the strongest predictors of 5-year mortality and may serve as a bellwether for slowed cellular regeneration or as a marker of cumulative toxic environmental exposures. This finding provides clues for pinpointing an underlying mechanism related to a fundamental component of the aging process.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1
A. Olfactory dysfunction and 5-year mortality in three age groups (ages 57–64, 65–74, and 75–85 years). B. Progressive increase in 5-year mortality with each additional error in odor identification (p<0.001 from one degree of freedom test for trend); from logistic regression as in Model C Table 2, with number of odor identification errors.
Figure 2. Odds for 5-year mortality for…
Figure 2. Odds for 5-year mortality for olfactory dysfunction compared to most common causes of death.
Odds ratios with 95% confidence intervals are displayed in forest plot format. Confidence intervals that do not cross the vertical dashed line (odds ratio  = 1) indicate statistical significance at the 0.05 level. Heart attack refers to myocardial infarction, whereas heart failure refers to congestive heart failure.
Figure 3. Effect of olfactory ability on…
Figure 3. Effect of olfactory ability on the mean predicted probability of 5-year mortality, adjusting for age (A) and composite mortality risk score composed of all variables in Model C except olfaction (B).
At the 75th percentile of composite mortality risk, anosmia increases the average probability of death to 0.39 from 0.16 for normal smellers.

References

    1. Niimura Y (2009) Evolutionary dynamics of olfactory receptor genes in chordates: interaction between environments and genomic contents. Hum Genomics 4: 107–118.
    1. Mennella JA, Jagnow CP, Beauchamp GK (2001) Prenatal and postnatal flavor learning by human infants. Pediatrics 107: E88.
    1. Hays NP, Roberts SB (2006) The anorexia of aging in humans. Physiol Behav 88: 257–266.
    1. Jacob S, McClintock MK, Zelano B, Ober C (2002) Paternally inherited HLA alleles are associated with women's choice of male odor. Nat Genet 30: 175–179.
    1. Jacob S, Garcia S, Hayreh D, McClintock MK (2002) Psychological effects of musky compounds: comparison of androstadienone with androstenol and muscone. Horm Behav 42: 274–283.
    1. Doucet S, Soussignan R, Sagot P, Schaal B (2009) The secretion of areolar (Montgomery's) glands from lactating women elicits selective, unconditional responses in neonates. PLoS One 4: e7579.
    1. Welge-Lussen A (2009) Ageing, neurodegeneration, and olfactory and gustatory loss. B-Ent 5 Suppl 13129–132.
    1. Burton SD, Ermentrout GB, Urban NN (2012) Intrinsic heterogeneity in oscillatory dynamics limits correlation-induced neural synchronization. J Neurophysiol 108: 2115–2133.
    1. Garcia-Esparcia P, Schluter A, Carmona M, Moreno J, Ansoleaga B, et al. (2013) Functional genomics reveals dysregulation of cortical olfactory receptors in Parkinson disease: novel putative chemoreceptors in the human brain. J Neuropathol Exp Neurol 72: 524–539.
    1. Pagano SF, Impagnatiello F, Girelli M, Cova L, Grioni E, et al. (2000) Isolation and characterization of neural stem cells from the adult human olfactory bulb. Stem Cells 18: 295–300.
    1. Roy NS, Wang S, Jiang L, Kang J, Benraiss A, et al. (2000) In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med 6: 271–277.
    1. Schwob JE (2002) Neural regeneration and the peripheral olfactory system. Anat Rec 269: 33–49.
    1. Watabe-Rudolph M, Begus-Nahrmann Y, Lechel A, Rolyan H, Scheithauer MO, et al. (2011) Telomere shortening impairs regeneration of the olfactory epithelium in response to injury but not under homeostatic conditions. PLoS One 6: e27801.
    1. Canter for Disease Control (2013) Mortality Tables. Available: . CDC.
    1. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, et al. (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56: M146–156.
    1. Makary MA, Segev DL, Pronovost PJ, Syin D, Bandeen-Roche K, et al. (2010) Frailty as a predictor of surgical outcomes in older patients. J Am Coll Surg 210: 901–908.
    1. Wilson RS, Arnold SE, Schneider JA, Boyle PA, Buchman AS, et al. (2009) Olfactory impairment in presymptomatic Alzheimer's disease. Ann N Y Acad Sci 1170: 730–735.
    1. Wilson RS, Arnold SE, Buchman AS, Tang Y, Bennett DA (2008) Odor identification and progression of parkinsonian signs in older persons. Exp Aging Res 34: 173–187.
    1. Stamps JJ, Bartoshuk LM, Heilman KM (2013) A brief olfactory test for Alzheimer's disease. J Neurol Sci 333: 19–24.
    1. Suzman R (2009) The National Social Life, Health, and Aging Project: an introduction. J Gerontol B Psychol Sci Soc Sci 64 Suppl 1i5–11.
    1. O'Muircheartaigh C, Eckman S, Smith S (2009) Statistical design and estimation for the national social life, health, and aging project. J Gerontol B Psychol Sci Soc Sci 64 Suppl 1i12–19.
    1. Pinto JM, Schumm LP, Wroblewski KE, Kern DW, McClintock MK (2013) Racial Disparities in Olfactory Loss Among Older Adults in the United States. J Gerontol A Biol Sci Med Sci.
    1. Qato DM LS, Conti RM, Schumm LP, Alexander GC (2010) Racial and ethnic disparities in cardiovascular medication use among older adults in the United States. Pharmacoepidemiol Drug Saf 19: 834–842.
    1. Waite LJ, Laumann EO, Das A, Schumm LP (2009) Sexuality: measures of partnerships, practices, attitudes, and problems in the National Social Life, Health, and Aging Study. J Gerontol B Psychol Sci Soc Sci 64 Suppl 1i56–66.
    1. Calderon-Garciduenas L, Solt AC, Henriquez-Roldan C, Torres-Jardon R, Nuse B, et al. (2008) Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol Pathol 36: 289–310.
    1. Schumm LP, McClintock M, Williams S, Leitsch S, Lundstrom J, et al. (2009) Assessment of sensory function in the National Social Life, Health, and Aging Project. J Gerontol B Psychol Sci Soc Sci 64 Suppl 1i76–85.
    1. Lindau ST, Schumm LP, Laumann EO, Levinson W, O'Muircheartaigh CA, et al. (2007) A study of sexuality and health among older adults in the United States. N Engl J Med 357: 762–774.
    1. Mueller C, Renner B (2006) A new procedure for the short screening of olfactory function using five items from the "Sniffin' Sticks" identification test kit. Am J Rhinol 20: 113–116.
    1. Kern DW, Wroblewski KE, Schumm LP, Pinto JM, McClintock MK Field Survey Measures of Olfaction: The Olfactory Function Field Exam (OFFE). Field Methods In press.
    1. Mueller C, Renner B (2006) A new procedure for the short screening of olfactory function using five items from the "Sniffin' Sticks" identification test kit. American Journal of Rhinology 20: 113–116.
    1. O'Muircheartaigh CA, Eckman S, Smith SN (2009) Statistical design and estimation for the national social life, health, and aging project. The Journals of Gerontology Series B, Psychological Sciences and Social Sciences 64 Suppl 1i12–i19.
    1. Katz JN CL, Sangha O, Fossel AH, Bates DW (1996) Can comorbidity be measured by questionnaire rather than medical record review? Med Care 34: 73–84.
    1. Williams SR, Pham-Kanter G, Leitsch SA (2009) Measures of chronic conditions and diseases associated with aging in the national social life, health, and aging project. J Gerontol B Psychol Sci Soc Sci 64 Suppl 1i67–75.
    1. Pfeiffer E (1975) A short portable mental status questionnaire for the assessment of organic brain deficit in elderly patients. J Am Geriatr Soc 23: 433–441.
    1. Ewing JA (1984) Detecting alcoholism. The CAGE questionnaire. Jama 252: 1905–1907.
    1. Binder DA (1983) On the variances of asymptotically normal estimators from complex surveys. International Statistical Review 51: 279–292.
    1. Administration SS (2014) Available: .
    1. Locher JL, Roth DL, Ritchie CS, Cox K, Sawyer P, et al. (2007) Body mass index, weight loss, and mortality in community-dwelling older adults. J Gerontol A Biol Sci Med Sci 62: 1389–1392.
    1. Cao S, Moineddin R, Urquia ML, Razak F, Ray JG (2014) J-shapedness: an often missed, often miscalculated relation: the example of weight and mortality. J Epidemiol Community Health 68: 683–690.
    1. Flegal KM, Kit BK, Orpana H, Graubard BI (2013) Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309: 71–82.
    1. Mullol J, Alobid I, Marino-Sanchez F, Quinto L, de Haro J, et al... (2012) Furthering the understanding of olfaction, prevalence of loss of smell and risk factors: a population-based survey (OLFACAT study). BMJ Open 2.
    1. Keller A, Hempstead M, Gomez IA, Gilbert AN, Vosshall LB (2012) An olfactory demography of a diverse metropolitan population. BMC Neurosci 13: 122.
    1. Doty RL (2008) The olfactory vector hypothesis of neurodegenerative disease: is it viable? Ann Neurol 63: 7–15.
    1. Prediger RD, Aguiar AS Jr, Matheus FC, Walz R, Antoury L, et al. (2012) Intranasal administration of neurotoxicants in animals: support for the olfactory vector hypothesis of Parkinson's disease. Neurotox Res 21: 90–116.
    1. Gan WQ, FitzGerald JM, Carlsten C, Sadatsafavi M, Brauer M (2013) Associations of ambient air pollution with chronic obstructive pulmonary disease hospitalization and mortality. Am J Respir Crit Care Med 187: 721–727.
    1. de Ruijter W, Westendorp RG, Assendelft WJ, den Elzen WP, de Craen AJ, et al. (2009) Use of Framingham risk score and new biomarkers to predict cardiovascular mortality in older people: population based observational cohort study. BMJ 338: a3083.
    1. Zethelius B, Berglund L, Sundstrom J, Ingelsson E, Basu S, et al. (2008) Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med 358: 2107–2116.
    1. Goldman N, Turra CM, Glei DA, Seplaki CL, Lin YH, et al. (2006) Predicting mortality from clinical and nonclinical biomarkers. J Gerontol A Biol Sci Med Sci 61: 1070–1074.
    1. Kistorp C, Raymond I, Pedersen F, Gustafsson F, Faber J, et al. (2005) N-terminal pro-brain natriuretic peptide, C-reactive protein, and urinary albumin levels as predictors of mortality and cardiovascular events in older adults. JAMA 293: 1609–1616.
    1. Fried LP, Kronmal RA, Newman AB, Bild DE, Mittelmark MB, et al. (1998) Risk factors for 5-year mortality in older adults: the Cardiovascular Health Study. JAMA 279: 585–592.
    1. Corti MC, Guralnik JM, Salive ME, Sorkin JD (1994) Serum albumin level and physical disability as predictors of mortality in older persons. JAMA 272: 1036–1042.
    1. Rosero-Bixby L, Dow WH (2012) Predicting mortality with biomarkers: a population-based prospective cohort study for elderly Costa Ricans. Popul Health Metr 10: 11.
    1. Reuben DB, Cheh AI, Harris TB, Ferrucci L, Rowe JW, et al. (2002) Peripheral blood markers of inflammation predict mortality and functional decline in high-functioning community-dwelling older persons. J Am Geriatr Soc 50: 638–644.

Source: PubMed

3
Tilaa