Echocardiographic parameters during prolonged targeted temperature Management in out-of-hospital Cardiac Arrest Survivors to predict neurological outcome - a post-hoc analysis of the TTH48 trial

Thomas Hvid Jensen, Peter Juhl-Olsen, Bent Roni Ranghøj Nielsen, Johan Heiberg, Christophe Henri Valdemar Duez, Anni Nørgaard Jeppesen, Christian Alcaraz Frederiksen, Hans Kirkegaard, Anders Morten Grejs, Thomas Hvid Jensen, Peter Juhl-Olsen, Bent Roni Ranghøj Nielsen, Johan Heiberg, Christophe Henri Valdemar Duez, Anni Nørgaard Jeppesen, Christian Alcaraz Frederiksen, Hans Kirkegaard, Anders Morten Grejs

Abstract

Background: Transthoracic echocardiographic (TTE) indices of myocardial function among survivors of out-of-hospital cardiac arrest (OHCA) have been related to neurological outcome; however, results are inconsistent. We hypothesized that changes in average peak systolic mitral annular velocity (s') from 24 h (h) to 72 h following start of targeted temperature management (TTM) predict six-month neurological outcome in comatose OHCA survivors.

Methods: We investigated the association between peak systolic velocity of the mitral plane (s') and six-month neurological outcome in a population of 99 patients from a randomised controlled trial comparing TTM at 33 ± 1 °C for 24 h (h) (n = 47) vs. 48 h (n = 52) following OHCA (TTH48-trial). TTE was conducted at 24 h, 48 h, and 72 h after reaching target temperature. The primary outcome was 180 days neurological outcome assessed by Cerebral Performance Category score (CPC180) and the primary TTE outcome measure was s'. Secondary outcome measures were left ventricular ejection fraction (LVEF), global longitudinal strain (GLS), e', E/e' and tricuspid annular plane systolic excursion (TAPSE).

Results: Across all three scan time points s' was not associated with neurological outcome (ORs: 24 h: 1.0 (95%CI: 0.7-1.4, p = 0.98), 48 h: 1.13 (95%CI: 0.9-1.4, p = 0.34), 72 h: 1.04 (95%CI: 0.8-1.4, p = 0.76)). LVEF, GLS, E/e', and TAPSE recorded on serial TTEs following OHCA were neither associated with nor did they predict CPC180. Estimated median e' at 48 h following TTM was 5.74 cm/s (95%CI: 5.27-6.22) in patients with good outcome (CPC180 1-2) vs. 4.95 cm/s (95%CI: 4.37-5.54) in patients with poor outcome (CPC180 3-5) (p = 0.04).

Conclusions: s' assessed on serial TTEs in comatose survivors of OHCA treated with TTM was not associated with CPC180. Our findings suggest that serial TTEs in the early post-resuscitation phase during TTM do not aid the prognostication of neurological outcome following OHCA.

Trial registration: NCT02066753 . Registered 14 February 2014 - Retrospectively registered.

Keywords: Cardiac arrest; Echocardiography; Out-of-hospital cardiac arrest; Prognostication; Targeted temperature management.

Conflict of interest statement

AMG declares to have received speaking fee from Novartis and Merck Sharp and Dome (MSD). All other authors declare no conflicts of interest.

Figures

Fig. 1
Fig. 1
Consort diagram. Technical problems indicate problems with poor image quality where outcomes were not assessable
Fig. 2
Fig. 2
Estimated medians of echocardiographic outcomes. Echocardiography outcomes across all scan time points in the good outcome group and the poor outcome group, respectively. X-axes refer to scan time points. When testing for parallel curves, no graphs showed significantly different curves. Significant differences at time points are indicated below. Abbreviations: CPC180: cerebral performance category at 180 days, EF: ejection fraction, GLS: global longitudinal strain, h: hours, IVC: inferior vena cava variability, mm: millimetre, TAPSE: tricuspid annular plane systolic excursion. *: p = 0.044, #: p = 0.036

References

    1. Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke Statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135:e146–e603. doi: 10.1161/CIR.0000000000000485.
    1. Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation. 2010;81:1479–1487. doi: 10.1016/j.resuscitation.2010.08.006.
    1. Dragancea I, Rundgren M, Englund E, Friberg H, Cronberg T. The influence of induced hypothermia and delayed prognostication on the mode of death after cardiac arrest. Resuscitation. 2013;84:337–342. doi: 10.1016/j.resuscitation.2012.09.015.
    1. Nolan JP, Neumar RW, Adrie C, et al. Post-cardiac arrest syndrome: Epidemiology, pathophysiology, treatment, and prognostication: A scientific statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke (Part 1) Int Emerg Nurs. 2009;17:203–225. doi: 10.1016/j.ienj.2009.01.001.
    1. Laurent I, Monchi M, Chiche JD, et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol. 2002;40:2110–2116. doi: 10.1016/S0735-1097(02)02594-9.
    1. Gazmuri RJ, Weil MH, Bisera J, Tang W, Fukui M, McKee D. Myocardial dysfunction after successful resuscitation from cardiac arrest. Crit Care Med. 1996;24:992–1000. doi: 10.1097/00003246-199606000-00020.
    1. Cha KC, Kim HI, Kim OH, et al. Echocardiographic patterns of postresuscitation myocardial dysfunction. Resuscitation. 2018;124:90–95. doi: 10.1016/j.resuscitation.2018.01.019.
    1. Kern KB, Hilwig RW, Rhee KH, Berg RA. Myocardial dysfunction after resuscitation from cardiac arrest: an example of global myocardial stunning. J Am Coll Cardiol. 1996;28:232–240. doi: 10.1016/0735-1097(96)00130-1.
    1. Perkins GD, Jacobs IG, Nadkarni VM, et al. Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein Resuscitation Registry Templates for Out-of-Hospital Cardiac Arrest: A Statement for Healthcare Professionals From a Task Force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia); and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Resuscitation. 2015;96:328–340. doi: 10.1016/j.resuscitation.2014.11.002.
    1. Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–563. doi: 10.1056/NEJMoa003289.
    1. GROUP THACAS Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549–556. doi: 10.1056/NEJMoa012689.
    1. Donnino MW, Andersen LW, Berg KM, et al. Temperature management after cardiac arrest: an advisory statement by the advanced life support task force of the international liaison committee on resuscitation and the American Heart Association emergency cardiovascular care committee and the council on cardiopulmonary, critical care, perioperative and resuscitation. Resuscitation. 2016;98:97–104. doi: 10.1016/j.resuscitation.2015.09.396.
    1. Kirkegaard H, Soreide E, de Haas I, et al. Targeted temperature management for 48 vs 24 hours and neurologic outcome after out-of-hospital cardiac arrest: a randomized clinical trial. Jama. 2017;318:341–350. doi: 10.1001/jama.2017.8978.
    1. Grejs AM, Nielsen BRR, Juhl-Olsen P, et al. Effect of prolonged targeted temperature management on left ventricular myocardial function after out-of-hospital cardiac arrest - a randomised, controlled trial. Resuscitation. 2017;115:23–31. doi: 10.1016/j.resuscitation.2017.03.021.
    1. Anderson RJ, Jinadasa SP, Hsu L, et al. Shock subtypes by left ventricular ejection fraction following out-of-hospital cardiac arrest. Crit Care. 2018;22:162. doi: 10.1186/s13054-018-2078-x.
    1. Chang WT, Ma MH, Chien KL, et al. Postresuscitation myocardial dysfunction: correlated factors and prognostic implications. Intensive Care Med. 2007;33:88–95. doi: 10.1007/s00134-006-0442-9.
    1. Checchia PA, Sehra R, Moynihan J, Daher N, Tang W, Weil MH. Myocardial injury in children following resuscitation after cardiac arrest. Resuscitation. 2003;57:131–137. doi: 10.1016/S0300-9572(03)00003-0.
    1. Ruiz-Bailen M, Aguayo de Hoyos E, Ruiz-Navarro S, et al. Reversible myocardial dysfunction after cardiopulmonary resuscitation. Resuscitation. 2005;66:175–181. doi: 10.1016/j.resuscitation.2005.01.012.
    1. Jentzer JC, Anavekar NS, Mankad SV, et al. Echocardiographic left ventricular diastolic dysfunction predicts hospital mortality after out-of-hospital cardiac arrest. J Crit Care. 2018;47:114–120. doi: 10.1016/j.jcrc.2018.06.016.
    1. Jentzer JC, Anavekar NS, Mankad SV, et al. Changes in left ventricular systolic and diastolic function on serial echocardiography after out-of-hospital cardiac arrest. Resuscitation. 2018;126:1–6. doi: 10.1016/j.resuscitation.2018.01.050.
    1. Grossestreuer AV, Abella BS, Sheak KR, et al. Inter-rater reliability of post-arrest cerebral performance category (CPC) scores. Resuscitation. 2016;109:21–24. doi: 10.1016/j.resuscitation.2016.09.006.
    1. Nikitin NP, Witte KK, Thackray SD, de Silva R, Clark AL, Cleland JG. Longitudinal ventricular function: normal values of atrioventricular annular and myocardial velocities measured with quantitative two-dimensional color Doppler tissue imaging. J Am Soc Echocardiography. 2003;16:906–921. doi: 10.1016/S0894-7317(03)00279-7.
    1. Mor-Avi V, Lang RM, Badano LP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiography. 2011;12:167–205. doi: 10.1093/ejechocard/jer021.
    1. Stanton T, Marwick TH. Assessment of subendocardial structure and function. J Am Coll Cardiol Img. 2010;3:867–875. doi: 10.1016/j.jcmg.2010.05.011.
    1. Husebye T, Eritsland J, Bjørnerheim R, Andersen G. Systolic mitral annulus velocity is a sensitive index for changes in left ventricular systolic function during inotropic therapy in patients with acute heart failure. Eur Heart J Acute Cardiovasc Care. 2018;7:321–329. doi: 10.1177/2048872616687114.
    1. Biering-Sørensen T, Jensen JS, Pedersen S, et al. Doppler tissue imaging is an independent predictor of outcome in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. J Am Soc Echocardiography. 2014;27:258–267. doi: 10.1016/j.echo.2013.11.005.
    1. Mogelvang R, Sogaard P, Pedersen SA, et al. Cardiac dysfunction assessed by echocardiographic tissue Doppler imaging is an independent predictor of mortality in the general population. Circulation. 2009;119:2679–2685. doi: 10.1161/CIRCULATIONAHA.108.793471.
    1. Yamamoto T, Oki T, Yamada H, et al. Prognostic value of the atrial systolic mitral annular motion velocity in patients with left ventricular systolic dysfunction. J Am Soc Echocardiography. 2003;16:333–339. doi: 10.1016/S0894-7317(02)74537-9.
    1. Kirkegaard H, Rasmussen BS, de Haas I, et al. Time-differentiated target temperature management after out-of-hospital cardiac arrest: a multicentre, randomised, parallel-group, assessor-blinded clinical trial (the TTH48 trial): study protocol for a randomised controlled trial. Trials. 2016;17:228. doi: 10.1186/s13063-016-1338-9.
    1. Cummins RO, Chamberlain DA, Abramson NS, et al. Recommended guidelines for uniform reporting of data from out-of-hospital cardiac arrest: the Utstein style. A statement for health professionals from a task force of the American Heart Association, the European resuscitation council, the Heart and Stroke Foundation of Canada, and the Australian resuscitation council. Circulation. 1991;84:960–975. doi: 10.1161/01.CIR.84.2.960.
    1. Sessler CN, Gosnell MS, Grap MJ, et al. The Richmond agitation-sedation scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166:1338–1344. doi: 10.1164/rccm.2107138.
    1. Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med. 2009;37:S186–S202. doi: 10.1097/CCM.0b013e3181aa5241.
    1. Juhl-Olsen P, Hermansen JF, Frederiksen CA, Rasmussen LA, Jakobsen CJ, Sloth E. Positive end-expiratory pressure influences echocardiographic measures of diastolic function: a randomized, crossover study in cardiac surgery patients. Anesthesiology. 2013;119:1078–1086. doi: 10.1097/ALN.0b013e3182a10b40.
    1. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiography. 2010;23:685–713. doi: 10.1016/j.echo.2010.05.010.
    1. Andersen NH, Terkelsen CJ, Sloth E, Poulsen SH. Influence of preload alterations on parameters of systolic left ventricular long-axis function: a Doppler tissue study. J Am Soc Echocardiography. 2004;17:941–947. doi: 10.1016/j.echo.2004.05.004.
    1. Dandel M, Lehmkuhl H, Knosalla C, Suramelashvili N, Hetzer R. Strain and strain rate imaging by echocardiography - basic concepts and clinical applicability. Curr Cardiol Rev. 2009;5:133–148. doi: 10.2174/157340309788166642.
    1. Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S. Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J. 2016;37:1196–1207. doi: 10.1093/eurheartj/ehv529.
    1. Vermeiren GL, Malbrain ML, Walpot JM. Cardiac Ultrasonography in the critical care setting: a practical approach to asses cardiac function and preload for the "non-cardiologist". Anaesthesiol Intensive Ther. 2015;47:s89–104. doi: 10.5603/AIT.a2015.0074.
    1. Fraser AG, Payne N, Madler CF, et al. Feasibility and reproducibility of off-line tissue Doppler measurement of regional myocardial function during dobutamine stress echocardiography. Eur J Echocardiography. 2003;4:43–53. doi: 10.1053/euje.4.1.43.
    1. Conlon TW, Falkensammer CB, Hammond RS, Nadkarni VM, Berg RA, Topjian AA. Association of left ventricular systolic function and vasopressor support with survival following pediatric out-of-hospital cardiac arrest. Pediatr Crit Care Med. 2015;16:146–154. doi: 10.1097/PCC.0000000000000305.
    1. Ramjee V, Grossestreuer AV, Yao Y, et al. Right ventricular dysfunction after resuscitation predicts poor outcomes in cardiac arrest patients independent of left ventricular function. Resuscitation. 2015;96:186–191. doi: 10.1016/j.resuscitation.2015.08.008.
    1. Wardi G, Blanchard D, Dittrich T, Kaushal K, Sell R. Right ventricle dysfunction and echocardiographic parameters in the first 24h following resuscitation in the post-cardiac arrest patient: a retrospective cohort study. Resuscitation. 2016;103:71–74. doi: 10.1016/j.resuscitation.2016.03.009.
    1. Burstein B, Jayaraman D, Husa R. Early left ventricular ejection fraction as a predictor of survival after cardiac arrest. Acute Card Care. 2016;18:35–39. doi: 10.1080/17482941.2017.1293831.
    1. Jentzer JC, Chonde MD, Shafton A, et al. Echocardiographic left ventricular systolic dysfunction early after resuscitation from cardiac arrest does not predict mortality or vasopressor requirements. Resuscitation. 2016;106:58–64. doi: 10.1016/j.resuscitation.2016.06.028.
    1. Yao Y, Johnson NJ, Perman SM, Ramjee V, Grossestreuer AV, Gaieski DF. Myocardial dysfunction after out-of-hospital cardiac arrest: predictors and prognostic implications. Intern Emerg Med. 2018;13:765–772. doi: 10.1007/s11739-017-1756-z.
    1. Wissenberg M, Lippert FK, Folke F, et al. Association of national initiatives to improve cardiac arrest management with rates of bystander intervention and patient survival after out-of-hospital cardiac arrest. Jama. 2013;310:1377–1384. doi: 10.1001/jama.2013.278483.
    1. Nielsen N, Wetterslev J, Cronberg T, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369:2197–2206. doi: 10.1056/NEJMoa1310519.

Source: PubMed

3
Tilaa