A randomised, active- and placebo-controlled, three-period crossover trial to investigate short-term effects of the dipeptidyl peptidase-4 inhibitor linagliptin on macro- and microvascular endothelial function in type 2 diabetes

Thomas Jax, Alin Stirban, Arne Terjung, Habib Esmaeili, Andreas Berk, Sandra Thiemann, Robert Chilton, Maximilian von Eynatten, Nikolaus Marx, Thomas Jax, Alin Stirban, Arne Terjung, Habib Esmaeili, Andreas Berk, Sandra Thiemann, Robert Chilton, Maximilian von Eynatten, Nikolaus Marx

Abstract

Background: Studies of dipeptidyl peptidase (DPP)-4 inhibitors report heterogeneous effects on endothelial function in patients with type 2 diabetes (T2D). This study assessed the effects of the DPP-4 inhibitor linagliptin versus the sulphonylurea glimepiride and placebo on measures of macro- and microvascular endothelial function in patients with T2D who represented a primary cardiovascular disease prevention population.

Methods: This crossover study randomised T2D patients (n = 42) with glycated haemoglobin (HbA1c) ≤7.5%, no diagnosed macro- or microvascular disease and on stable metformin background to linagliptin 5 mg qd, glimepiride 1-4 mg qd or placebo for 28 days. Fasting and postprandial macrovascular endothelial function, measured using brachial flow-mediated vasodilation, and microvascular function, measured using laser-Doppler on the dorsal thenar site of the right hand, were analysed after 28 days.

Results: Baseline mean (standard deviation) age, body mass index and HbA1c were 60.3 (6.0) years, 30.3 (3.0) kg/m2 and 7.41 (0.61)%, respectively. After 28 days, changes in fasting flow-mediated vasodilation were similar between the three study arms (treatment ratio, gMean [90% confidence interval]: linagliptin vs glimepiride, 0.884 [0.633-1.235]; linagliptin vs placebo, 0.884 [0.632-1.235]; glimepiride vs placebo, 1.000 [0.715-1.397]; P = not significant for all comparisons). Similarly, no differences were seen in postprandial flow-mediated vasodilation. However, under fasting conditions, linagliptin significantly improved microvascular function as shown by a 34% increase in hyperaemia area (P = 0.045 vs glimepiride), a 34% increase in resting blow flow (P = 0.011 vs glimepiride, P = 0.003 vs placebo), and a 25% increase in peak blood flow (P = 0.009 vs glimepiride, P = 0.003 vs placebo). There were no significant differences between treatments in postprandial changes. Linagliptin had no effect on heart rate or blood pressure. Rates of overall adverse events with linagliptin, glimepiride and placebo were 27.5, 61.0 and 35.0%, respectively. Fewer hypoglycaemic events were seen with linagliptin (5.0%) and placebo (2.5%) than with glimepiride (39.0%).

Conclusions: Linagliptin had no effect on macrovascular function in T2D, but significantly improved microvascular function in the fasting state. Trial registration ClinicalTrials.gov identifier-NCT01703286; registered October 1, 2012.

Keywords: Dipeptidyl peptidase-4 inhibitor; Endothelial function; Flow-mediated vasodilation; Linagliptin; Macrovascular; Microvascular; Sulphonylurea; Type 2 diabetes.

Figures

Fig. 1
Fig. 1
a Study design. b Vascular assessments on day 1 and day 28 of the 4-week treatment periods. FMD flow-mediated vasodilation, NMD nitroglycerin-mediated vasodilation. *Glimepiride dose uptitration protocol: initial daily dose of 1 mg for 1 week, uptitrated to 2 mg from week 2; further uptitration to maximum daily dose of 4 mg was allowed if fasting glucose levels were >110 mg/dL (>6.1 mmol/L) at days 14 and 21, and at the investigator’s discretion. †2-h postprandial
Fig. 2
Fig. 2
Change from baseline after 28 days between the three treatment groups in brachial endothelial-dependent macrocirculatory function using flow-mediated vasodilation (efficacy set). a Fasting. b 2-h postprandial. *Ratio of flow-mediated vasodilation on day 28 to flow-mediated vasodilation at baseline. †n = 40 at baseline. CI confidence interval, FMD flow-mediated vasodilation
Fig. 3
Fig. 3
Change from baseline after 28 days between the three treatment groups in endothelial-dependent microcirculatory function using laser-Doppler—hyperaemia area (efficacy set). a Fasting. b 2-h postprandial. *Ratio of hyperaemia on day 28 to hyperaemia at baseline. †n = 40 at baseline. ‡n = 38 at baseline. CI confidence interval
Fig. 4
Fig. 4
Change from baseline after 28 days between the three treatment groups in endothelial-dependent microcirculatory function using laser-Doppler—resting blood flow (efficacy set). a Fasting. b 2-h postprandial. *Ratio of resting blood flow on day 28 to resting blood flow at baseline. †n = 40 at baseline. ‡n = 38 at baseline. CI confidence interval
Fig. 5
Fig. 5
Change from baseline after 28 days between the three treatment groups in endothelial-dependent microcirculatory function using laser-Doppler—peak blood flow (efficacy set). a Fasting. b 2-h postprandial. *Ratio of peak blood flow on day 28 to peak blood flow at baseline. †n = 40 at baseline. ‡n = 38 at baseline. CI confidence interval
Fig. 6
Fig. 6
Frequency of patients with investigator-reported hypoglycaemia (treated set). BG blood glucose

References

    1. Sena CM, Pereira AM, Seiça R. Endothelial dysfunction—a major mediator of diabetic vascular disease. Biochim Biophys Acta. 2013;1832(12):2216–2231. doi: 10.1016/j.bbadis.2013.08.006.
    1. Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115(10):1285–1295.
    1. van Sloten TT, Henry RM, Dekker JM, Nijpels G, Unger T, Schram MT, et al. Endothelial dysfunction plays a key role in increasing cardiovascular risk in type 2 diabetes: the Hoorn study. Hypertension. 2014;64(6):1299–1305. doi: 10.1161/HYPERTENSIONAHA.114.04221.
    1. de Jager J, Dekker JM, Kooy A, Kostense PJ, Nijpels G, Heine RJ, et al. Endothelial dysfunction and low-grade inflammation explain much of the excess cardiovascular mortality in individuals with type 2 diabetes: the Hoorn Study. Arterioscler Thromb Vasc Biol. 2006;26(5):1086–1093. doi: 10.1161/01.ATV.0000215951.36219.a4.
    1. Godinho R, Mega C, Teixeira-de-Lemos E, Carvalho E, Teixeira F, Fernandes R, et al. The place of dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapeutics: a “me too” or “the special one” antidiabetic class? J Diabetes Res. 2015;2015:806979. doi: 10.1155/2015/806979.
    1. Ussher JR, Drucker DJ. Cardiovascular biology of the incretin system. Endocr Rev. 2012;33(2):187–215. doi: 10.1210/er.2011-1052.
    1. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008;117(18):2340–2350. doi: 10.1161/CIRCULATIONAHA.107.739938.
    1. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373(3):232–242. doi: 10.1056/NEJMoa1501352.
    1. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–1326. doi: 10.1056/NEJMoa1307684.
    1. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369(14):1327–1335. doi: 10.1056/NEJMoa1305889.
    1. Noda Y, Miyoshi T, Oe H, Ohno Y, Nakamura K, Toh N, et al. Alogliptin ameliorates postprandial lipemia and postprandial endothelial dysfunction in non-diabetic subjects: a preliminary report. Cardiovasc Diabetol. 2013;12:8. doi: 10.1186/1475-2840-12-8.
    1. Noguchi K, Hirota M, Miyoshi T, Tani Y, Noda Y, Ito H, et al. Single administration of vildagliptin attenuates postprandial hypertriglyceridemia and endothelial dysfunction in normoglycemic individuals. Exp Ther Med. 2015;9(1):84–88.
    1. Ayaori M, Iwakami N, Uto-Kondo H, Sato H, Sasaki M, Komatsu T, et al. Dipeptidyl peptidase-4 inhibitors attenuate endothelial function as evaluated by flow-mediated vasodilatation in type 2 diabetic patients. J Am Heart Assoc. 2013;2(1):e003277. doi: 10.1161/JAHA.112.003277.
    1. Kubota Y, Miyamoto M, Takagi G, Ikeda T, Kirinoki-Ichikawa S, Tanaka K, et al. The dipeptidyl peptidase-4 inhibitor sitagliptin improves vascular endothelial function in type 2 diabetes. J Korean Med Sci. 2012;27(11):1364–1370. doi: 10.3346/jkms.2012.27.11.1364.
    1. Ott C, Raff U, Schmidt S, Kistner I, Friedrich S, Bramlage P, et al. Effects of saxagliptin on early microvascular changes in patients with type 2 diabetes. Cardiovasc Diabetol. 2014;13:19. doi: 10.1186/1475-2840-13-19.
    1. van Poppel PC, Netea MG, Smits P, Tack CJ. Vildagliptin improves endothelium-dependent vasodilatation in type 2 diabetes. Diabetes Care. 2011;34(9):2072–2077. doi: 10.2337/dc10-2421.
    1. Nakamura K, Oe H, Kihara H, Shimada K, Fukuda S, Watanabe K, et al. DPP-4 inhibitor and alpha-glucosidase inhibitor equally improve endothelial function in patients with type 2 diabetes: EDGE study. Cardiovasc Diabetol. 2014;13:110. doi: 10.1186/s12933-014-0110-2.
    1. Schmoelzer I, Wascher TC. Effect of repaglinide on endothelial dysfunction during a glucose tolerance test in subjects with impaired glucose tolerance. Cardiovasc Diabetol. 2006;5:9. doi: 10.1186/1475-2840-5-9.
    1. Mather KJ, Verma S, Anderson TJ. Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol. 2001;37(5):1344–1350. doi: 10.1016/S0735-1097(01)01129-9.
    1. Vehkavaara S, Mäkimattila S, Schlenzka A, Vakkilainen J, Westerbacka J, Yki-Järvinen H. Insulin therapy improves endothelial function in type 2 diabetes. Arterioscler Thromb Vasc Biol. 2000;20(2):545–550. doi: 10.1161/01.ATV.20.2.545.
    1. Rosenstock J, Marx N, Neubacher D, Seck T, Patel S, Woerle HJ, et al. Cardiovascular safety of linagliptin in type 2 diabetes: a comprehensive patient-level pooled analysis of prospectively adjudicated cardiovascular events. Cardiovasc Diabetol. 2015;14:57. doi: 10.1186/s12933-015-0215-2.
    1. Suzuki K, Watanabe K, Suzuki T, Ouchi M, Futami-Suda S, Igari Y, et al. Sitagliptin improves vascular endothelial function in Japanese type 2 diabetes patients without cardiovascular disease. J Diabetes Mellitus. 2012;2(3):338–345. doi: 10.4236/jdm.2012.23053.
    1. Matsubara J, Sugiyama S, Akiyama E, Iwashita S, Kurokawa H, Ohba K, et al. Dipeptidyl peptidase-4 inhibitor, sitagliptin, improves endothelial dysfunction in association with its anti-inflammatory effects in patients with coronary artery disease and uncontrolled diabetes. Circ J. 2013;77(5):1337–1344. doi: 10.1253/circj.CJ-12-1168.
    1. Hage C, Brismar K, Lundman P, Norhammar A, Rydén L, Mellbin L. The DPP-4 inhibitor sitagliptin and endothelial function in patients with acute coronary syndromes and newly detected glucose perturbations: a report from the BEGAMI study. Diab Vasc Dis Res. 2014;11(4):290–293. doi: 10.1177/1479164114533355.
    1. Maruhashi T, Higashi Y, Kihara Y, Yamada H, Sata M, Ueda S, et al. Long-term effect of sitagliptin on endothelial function in type 2 diabetes: a sub-analysis of the PROLOGUE study. Cardiovasc Diabetol. 2016;15(1):134. doi: 10.1186/s12933-016-0438-x.
    1. Mita T, Katakami N, Yoshii H, Onuma T, Kaneto H, Osonoi T, et al. Alogliptin, a dipeptidyl peptidase 4 inhibitor, prevents the progression of carotid atherosclerosis in patients with type 2 diabetes: the Study of Preventive Effects of Alogliptin on Diabetic Atherosclerosis (SPEAD-A) Diabetes Care. 2016;39(1):139–148. doi: 10.2337/dc15-0781.
    1. Jax T. It may be premature to conclude a class effect of DPP-4 inhibitors on attenuating endothelial function measured by flow-mediated vasodilatation (electronic response to Ayaori M, et al. Dipeptidyl peptidase-4 inhibitors attenuate endothelial function as evaluated by flow-mediated vasodilatation in type 2 diabetic patients. J Am Heart Assoc. 2013;2:e003277. doi:10.1161/JAHA.112.003277).
    1. Rosenstock J, Marx N, Kahn SE, Zinman B, Kastelein JJ, Lachin JM, et al. Cardiovascular outcome trials in type 2 diabetes and the sulphonylurea controversy: rationale for the active-comparator CAROLINA trial. Diab Vasc Dis Res. 2013;10(4):289–301. doi: 10.1177/1479164112475102.
    1. Cracowski JL, Minson CT, Salvat-Melis M, Halliwill JR. Methodological issues in the assessment of skin microvascular endothelial function in humans. Trends Pharmacol Sci. 2006;27(9):503–508. doi: 10.1016/j.tips.2006.07.008.
    1. Ceriello A, Bortolotti N, Motz E, Crescentini A, Lizzio S, Russo A, et al. Meal-generated oxidative stress in type 2 diabetic patients. Diabetes Care. 1998;21(9):1529–1533. doi: 10.2337/diacare.21.9.1529.
    1. Negrean M, Stirban A, Stratmann B, Gawlowski T, Horstmann T, Götting C, et al. Effects of low- and high-advanced glycation endproduct meals on macro- and microvascular endothelial function and oxidative stress in patients with type 2 diabetes mellitus. Am J Clin Nutr. 2007;85(5):1236–1243.
    1. Stirban A, Nandrean S, Götting C, Tamler R, Pop A, Negrean M, et al. Effects of n-3 fatty acids on macro- and microvascular function in subjects with type 2 diabetes mellitus. Am J Clin Nutr. 2010;91(3):808–813. doi: 10.3945/ajcn.2009.28374.
    1. Kröller-Schön S, Knorr M, Hausding M, Oelze M, Schuff A, Schell R, et al. Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition. Cardiovasc Res. 2012;96(1):140–149. doi: 10.1093/cvr/cvs246.
    1. Salim HM, Fukuda D, Higashikuni Y, Tanaka K, Hirata Y, Yagi S, et al. Dipeptidyl peptidase-4 inhibitor, linagliptin, ameliorates endothelial dysfunction and atherogenesis in normoglycemic apolipoprotein-E deficient mice. Vascul Pharmacol. 2015;79:16–23. doi: 10.1016/j.vph.2015.08.011.
    1. Jyoti U, Kansal SK, Kumar P, Goyal S. Possible vasculoprotective role of linagliptin against sodium arsenite-induced vascular endothelial dysfunction. Naunyn Schmiedebergs Arch Pharmacol. 2016;389(2):167–175. doi: 10.1007/s00210-015-1184-4.
    1. Forst T, Michelson G, Diessel S, Jahnke J, Kapitza C. Microvascular effects of the inhibition of dipeptidylpeptidase IV by linagliptin in nondiabetic hypertensive patients. J Hypertens. 2016;34(2):345–350. doi: 10.1097/HJH.0000000000000776.
    1. Ott C, Kistner I, Keller M, Friedrich S, Willam C, Bramlage P, Schmieder RE, et al. Effects of linagliptin on renal endothelial function in patients with type 2 diabetes: a randomised clinical trial. Diabetologia. 2016;59(12):2579–2587. doi: 10.1007/s00125-016-4083-4.
    1. Baltzis D, Dushay JR, Loader J, Wu J, Greenman RL, Roustit M, et al. Effect of linagliptin on vascular function: a randomized, placebo-controlled study. J Clin Endocrinol Metab. 2016;101(11):4205–4213. doi: 10.1210/jc.2016-2655.
    1. Cooper ME, Perkovic V, McGill JB, Groop PH, Wanner C, Rosenstock J, et al. Kidney disease end points in a pooled analysis of individual patient-level data from a large clinical trials program of the dipeptidyl peptidase 4 inhibitor linagliptin in type 2 diabetes. Am J Kidney Dis. 2015;66(3):441–449. doi: 10.1053/j.ajkd.2015.03.024.
    1. Groop PH, Cooper ME, Perkovic V, Emser A, Woerle HJ, von Eynatten M. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care. 2013;36(11):3460–3468. doi: 10.2337/dc13-0323.
    1. Berndt-Zipfel C, Michelson G, Dworak M, Mitry M, Löffler A, Pfützner A, et al. Vildagliptin in addition to metformin improves retinal blood flow and erythrocyte deformability in patients with type 2 diabetes mellitus - results from an exploratory study. Cardiovasc Diabetol. 2013;12:59. doi: 10.1186/1475-2840-12-59.
    1. Smits MM, Tonneijck L, Muskiet MH, Hoekstra T, Kramer MH, Diamant M, et al. GLP-1-based therapies have no microvascular effects in type 2 diabetes mellitus: an acute and 12-week randomized, double-blind, placebo-controlled trial. Arterioscler Thromb Vasc Biol. 2016;36(10):2125–2132. doi: 10.1161/ATVBAHA.116.307930.
    1. UK Prospective Diabetes Study (UKPDS) Group Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) Lancet. 1998;352(9131):837–853. doi: 10.1016/S0140-6736(98)07019-6.
    1. Matheeussen V, Baerts L, De Meyer G, De Keulenaer G, Van der Veken P, Augustyns K, et al. Expression and spatial heterogeneity of dipeptidyl peptidases in endothelial cells of conduct vessels and capillaries. Biol Chem. 2011;392(3):189–198. doi: 10.1515/bc.2011.002.
    1. Jarnert C, Kalani M, Rydén L, Böhm F. Strict glycaemic control improves skin microcirculation in patients with type 2 diabetes: a report from the Diabetes mellitus And Diastolic Dysfunction (DADD) study. Diab Vasc Dis Res. 2012;9(4):287–295. doi: 10.1177/1479164111432182.

Source: PubMed

3
Tilaa