Imaging in Vascular Access

Eoin A Murphy, Rose A Ross, Robert G Jones, Stephen J Gandy, Nicolas Aristokleous, Marco Salsano, Jonathan R Weir-McCall, Shona Matthew, John Graeme Houston, Eoin A Murphy, Rose A Ross, Robert G Jones, Stephen J Gandy, Nicolas Aristokleous, Marco Salsano, Jonathan R Weir-McCall, Shona Matthew, John Graeme Houston

Abstract

This review examines four imaging modalities; ultrasound (US), digital subtraction angiography (DSA), magnetic resonance imaging (MRI) and computed tomography (CT), that have common or potential applications in vascular access (VA). The four modalities are reviewed under their primary uses, techniques, advantages and disadvantages, and future directions that are specific to VA. Currently, US is the most commonly used modality in VA because it is cheaper (relative to other modalities), accessible, non-ionising, and does not require the use of contrast agents. DSA is predominantly only performed when an intervention is indicated. MRI is limited by its cost and the time required for image acquisition that mainly confines it to the realm of research where high resolution is required. CT's short acquisition times and high resolution make it useful as a problem-solving tool in complex cases, although accessibility can be an issue. All four imaging modalities have advantages and disadvantages that limit their use in this particular patient cohort. Current imaging in VA comprises an integrated approach with each modality providing particular uses dependent on their capabilities. MRI and CT, which currently have limited use, may have increasingly important future roles in complex cases where detailed analysis is required.

Keywords: Arteriovenous fistula; Computed tomography; Digital subtraction angiography; Magnetic resonance imaging; Medical imaging; Ultrasound; Vascular access.

Figures

Figure 1
Figure 1
(a) US b-mode image of the vein-side of an AVF with a stenosis (marked with an asterisk). Also visible are the leaflets of a venous valve fixed in position. (b) US b-mode image of the same area superimposed with the colour Doppler data, and with PSV recorded at 6.733 m/s at the location within the crosshairs (stenosis again marked with an asterisk).
Figure 2
Figure 2
(a) Left arm angiogram shows a tight stenosis of the left subclavian vein, with marked visibility of the collateral branches. (b) A 10 mm standard balloon was used for the dilatation which (c) gave a good post dilatation result.
Figure 3
Figure 3
(a) Stenosis of a left brachiocephalic fistula, just central to the anastomosis. (b) A 6 mm cutting balloon was deployed at the stenosis site. (c) Good post dilatation results were observed.
Figure 4
Figure 4
Typical TOF image showing a radiocephalic fistula swing segment as a bright region on the left. The round bright region adjacent to the arm at the top of the image is an oil capsule used as a reference marker.
Figure 5
Figure 5
A snapshot of a 3-D reconstruction of the vasculature from TOF images at the elbow region of a patient’s brachiocephalic fistula. Note the signal dropout at the anastomosis because of flow turbulence.
Figure 6
Figure 6
A snapshot of a VENC showing the radial artery as the light grey region (a) and the vein as a dark grey region (b), and some aliasing in the ulnar artery (c) because the velocities are outside the VENC range.
Figure 7
Figure 7
3D reconstruction CT scan of a left brachiocephalic AV Fistula. The patient presented with localized gross bruising and tenderness 24 h following dialysis. A pulsatile swelling was evident on clinical examination. Ultrasound examination was not possible due to patient discomfort. The image adequately demonstrates a large pseudoaneurysm arising from the proximal aspect of the AV fistula. This image provided vital pre-operative road mapping information to the surgeon before operating to repair this abnormality.
Figure 8
Figure 8
3D reconstruction CT scan of an aortic arch in a patient with a poorly maturing AV fistula. A proximal subclavian artery stenosis was identified (arrow) and subsequently treated with an endovascular stent.
Figure 9
Figure 9
(a) Maximum intensity projection (MIP) image of a left loop thigh AVG in a patient who presented with spontaneous bleeding over the AVG. It demonstrates localized breakdown of the graft material and pseudoaneurysm formation (arrow) associated with repetitive needling at the same site. This was urgently treated with insertion of a stent-graft. (b) 3D reconstruction of the same patient also shows early AVG breakdown in the medial limb of the graft (arrow).
Figure 10
Figure 10
(a) Single cone-beam CT image taken during placement of a translumbar vena cava dialysis line in a patient with no further peripheral vascular access options. The image was used to safely and accurately puncture a stenotic inferior vena cava (IVC) via the tranlumbar route. The image shows the needle is the correct position with the tip in the IVC. (b) The tunneled catheter was subsequently placed using the Seldinger technique. The tip of the catheter can be seen adequately positioned within the right atrium on this single DSA image.

References

    1. Ahmed S, Raman SP, Fishman EK. Three-dimensional MDCT angiography for the assessment of arteriovenous grafts and fistulas in hemodialysis access. Diagn. Interv. Imaging. 2016;97:297–306. doi: 10.1016/j.diii.2015.12.008.
    1. Alley H, Owens CD, Gasper WJ, Grenon SM. Ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery in clinical research. J. Vis. Exp. 2014;92:e52070. doi: 10.3791/52070.
    1. Allon M, Daugirdas J, Depner TA, Greene T, Ornt D, Schwab SJ. Effect of change in vascular access on patient mortality in hemodialysis patients. Am. J. Kidney Dis. 2006;47:469–477. doi: 10.1053/j.ajkd.2005.11.023.
    1. Allon M, Lockhart ME, Lilly RZ, Gallichio MH, Young CJ, Barker J, Deierhoi MH, Robbin ML. Effect of preoperative sonographic mapping on vascular access outcomes in hemodialysis patients. Kidney Int. 2001;60:2013–2020. doi: 10.1046/j.1523-1755.2001.00031.x.
    1. Allon M, Robbin ML. Increasing arteriovenous fistulas in hemodialysis patients: problems and solutions. Kidney Int. 2002;62:1109–1124. doi: 10.1046/j.1523-1755.2002.00551.x.
    1. Altman SD. A practical approach for diagnosis and treatment of central venous stenosis and occlusion. Semin. Vasc. Surg. 2007;20:189–194. doi: 10.1053/j.semvascsurg.2007.07.002.
    1. Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 2008;47:1097–1112. doi: 10.1007/s11517-008-0420-1.
    1. Aristokleous N, Seimenis I, Georgiou GC, Nicolaides A, Anayiotos AS. The effect of head rotation on the geometry and hemodynamics of healthy vertebral arteries. Ann. Biomed. Eng. 2015;43:1287–1297. doi: 10.1007/s10439-015-1340-5.
    1. Ascher E, Gade P, Hingorani A, Mazzariol F, Gunduz Y, Fodera M, Yorkovich W. Changes in the practice of angioaccess surgery: impact of dialysis outcome and quality initiative recommendations. J. Vasc. Surg. 2000;31:84–92. doi: 10.1016/S0741-5214(00)70070-X.
    1. Ash SR. Fluid mechanics and clinical success of central venous catheters for dialysis-answers to simple but persisting problems. Semin. Dial. 2007;20:237–256. doi: 10.1111/j.1525-139X.2007.00284.x.
    1. Aytekin C, Boyvat F, Yağmurdur MC, Moray G, Haberal M. Endovascular stent placement in the treatment of upper extremity central venous obstruction in hemodialysis patients. Eur. J. Radiol. 2004;49:81–85. doi: 10.1016/S0720-048X(02)00370-4.
    1. Back MR, Maynard M, Winkler A, Bandyk DF. Expected flow parameters within hemodialysis access and selection for remedial intervention of nonmaturing conduits. Vasc. Endovasc. Surg. 2008;42:150–158. doi: 10.1177/1538574407312648.
    1. Bakken AM, Protack CD, Saad WE, Lee DE, Waldman DL, Davies MG. Long-term outcomes of primary angioplasty and primary stenting of central venous stenosis in hemodialysis patients. J. Vasc. Surg. 2007;45:776–783. doi: 10.1016/j.jvs.2006.12.046.
    1. Basile C, Giordano R, Montanaro A. How large is the variability of relative blood volume during haemodialysis? Nephrol. Dial. Transplant. 2001;16:431–432. doi: 10.1093/ndt/16.2.431.
    1. Bay WH, Henry ML, Lazarus JM, Lew NL, Ling J, Lowrie EG. Predicting hemodialysis access failure with color flow Doppler ultrasound. Am. J. Nephrol. 1998;18:296–304. doi: 10.1159/000013354.
    1. Berardinelli L. Grafts and graft materials as vascular substitutes for haemodialysis access construction. Eur. J. Vasc. Endovasc. Surg. 2006;32:203–211. doi: 10.1016/j.ejvs.2006.01.001.
    1. Bian W, Banerjee S, Kelly DAC, Christopher P, Larson PEZ, Chang SM, Nelson SJ, Lupo JM. Simultaneous imaging of radiation-induced cerebral microbleeds, arteries and veins, using a multiple gradient echo sequence at 7 Tesla. J. Magn. Reson. Imaging. 2015;42:269–279. doi: 10.1002/jmri.24802.Simultaneous.
    1. Brown PWG. Preoperative radiological assessment for vascular access. Eur. J. Vasc. Endovasc. Surg. 2006;31:64–69. doi: 10.1016/j.ejvs.2005.10.002.
    1. Bücker A, Vorwerk D, Günther RW. Transbrachial fine-needle arteriography with special focus on haemodialysis shunt imaging. Nephrol. Dial. Transplant. 1995;10:838–841. doi: 10.1093/oxfordjournals.ndt.a091232.
    1. Bush WH. Treatment of systemic reactions to contrast media. Urology. 1990;35:145–150. doi: 10.1016/0090-4295(90)80064-T.
    1. Chan MR, Chhokar VS, Young HN, Becker BN, Yevzlin AS. Retrograde occlusive arteriography of hemodialysis access: failure to detect inflow lesions? Semin. Dial. 2011;24:452–455. doi: 10.1111/j.1525-139X.2010.00761.x.
    1. Doelman C, Duijm LEM, Liem YS, Froger CL, Tielbeek AV, Donkers-Van Rossum AB, Cuypers PWM, Douwes-Draaijer P, Buth J, VanDenBosch HCM. Stenosis detection in failing hemodialysis access fistulas and grafts: comparison of color Doppler ultrasonography, contrast-enhanced magnetic resonance angiography, and digital subtraction angiography. J. Vasc. Surg. 2005;42:739–746. doi: 10.1016/j.jvs.2005.06.006.
    1. Dukkipati R, Peck M, Dhamija R, Hentschel DM, Reynolds T, Tammewar G, Mcallister T. Biological grafts for hemodialysis access: historical lessons, state-of-the-art and future directions. Semin. Dial. 2013;26:233–239. doi: 10.1111/j.1525-139X.2012.01106.x.
    1. Farber A, Barbey MM, Grunert JH, Gmelin E. Access-related venous stenoses and occlusions: treatment with percutaneous transluminal angioplasty and Dacron-covered stents. Cardiovasc. Intervent. Radiol. 1999;22:214–218. doi: 10.1007/s002709900369.
    1. Fenster A, Blake C, Gyacskov I, Landry A, Spence JD. 3D ultrasound analysis of carotid plaque volume and surface morphology. Ultrasonics. 2006;44:153–157. doi: 10.1016/j.ultras.2006.06.027.
    1. Finn JP, Nguyen KL, Han F, Zhou Z, Salusky I, Ayad I, Hu P. Cardiovascular MRI with ferumoxytol. Clin. Radiol. 2016;71:796–806. doi: 10.1016/j.crad.2016.03.020.
    1. Forauer AR, Theoharis C. Histologic changes in the human vein wall adjacent to indwelling central venous catheters. J. Vasc. Interv. Radiol. 2003;14:1163–1168. doi: 10.1097/01.RVI.0000086531.86489.4C.
    1. Gallo D, De Santis G, Negri F, Tresoldi D, Ponzini R, Massai D, Deriu MA, Segers P, Verhegghe B, Rizzo G, Morbiducci U. On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow. Ann. Biomed. Eng. 2012;40:729–741. doi: 10.1007/s10439-011-0431-1.
    1. Glor FP, Ariff B, Hughes AD, Crowe LA, Verdonck PR. Image-based carotid flow reconstruction: a comparison between MRI and ultrasound. Physiol. Meas. 2004;25:1495–1509. doi: 10.1088/0967-3334/25/6/014.
    1. Gorin DR, Perrino L, Potter DM, Ali TZ. Ultrasound-guided angioplasty of autogenous arteriovenous fistulas in the office setting. J. Vasc. Surg. 2012;55:1701–1705. doi: 10.1016/j.jvs.2011.12.016.
    1. Goubergrits L, Kertzscher U, Scho B, Wellnhofer E, Petz C. CFD analysis in an anatomically realistic coronary artery model based on non-invasive 3D imaging: comparison of magnetic resonance imaging with computed tomography. Int. J. Cardiovasc. Imaging. 2008;24:411–421. doi: 10.1007/s10554-007-9275-z.
    1. Grenon SM, Chong K, Alley H, Nosova E, Gasper W, Hiramoto J, Boscardin WJ, Owens CD. Walking disability in patients with peripheral artery disease is associated with arterial endothelial function. J. Vasc. Surg. 2014;59:1025–1034. doi: 10.1016/j.jvs.2013.10.084.
    1. Grogan J, Castilla M, Lozanski L, Griffin A, Loth F, Bassiouny H. Frequency of critical stenosis in primary arteriovenous fistulae before hemodialysis access: should duplex ultrasound surveillance be the standard of care? J. Vasc. Surg. 2005;41:1000–1006. doi: 10.1016/j.jvs.2005.02.019.
    1. Ha H, Kim GB, Kweon J, Kim YH, Kim N, Yang DH, Lee SJ. Multi-VENC acquisition of four-dimensional phase-contrast MRI to improve precision of velocity field measurement. Magn. Reson. Med. 2016;75:1909–1919. doi: 10.1002/mrm.25715.
    1. Haage P, Vorwerk D, Piroth W, Schuermann K, Guenther RW. Treatment of hemodialysis-related central venous stenosis or occlusion: results of primary Wallstent placement and follow-up in 50 patients. Radiology. 1999;212:175–180. doi: 10.1148/radiology.212.1.r99jl21175.
    1. Harwood LE, Wilson BM, Oudshoorn A. Improving vascular access outcomes: attributes of arteriovenous fistula cannulation success. Clin. Kidney J. 2016;9:303–309. doi: 10.1093/ckj/sfv158.
    1. Heye S, Fourneau I, Maleux G, Claes K, Kuypers D, Oyen R. Preoperative mapping for haemodialysis access surgery with CO2 venography of the upper limb. Eur. J. Vasc. Endovasc. Surg. 2010;39:340–345. doi: 10.1016/j.ejvs.2009.11.036.
    1. Heye S, Maleux G, Claes K, Kuypers D, Oyen R. Stenosis detection in native hemodialysis fistulas with MDCT angiography. Am. J. Roentgenol. 2009;192:1079–1084. doi: 10.2214/AJR.08.1620.
    1. Hyland K, Cohen RM, Kwak A, Shlansky-Goldberg RD, Soulen MC, Patel AA, Mondschein JI, Solomon JA, Stavropoulos SW, Itkin M, Yeh H, Markmann J, Trerotola SO. Preoperative mapping venography in patients who require hemodialysis access: imaging findings and contribution to management. J. Vasc. Interv. Radiol. 2008;19:1027–1033. doi: 10.1016/j.jvir.2008.03.015.
    1. Illig KA, Gabbard W, Calero A, Bailey C, Shames M, Armstrong P, Nelson PR. Aggressive costoclavicular junction decompression in patients with threatened AV access. Ann. Vasc. Surg. 2015;29:698–703. doi: 10.1016/j.avsg.2014.11.021.
    1. Kamata T, Tomita M, Iehara N. Ultrasound-guided cannulation of hemodialysis access. Ren. Replace. Ther. 2016;2:7. doi: 10.1186/s41100-016-0019-1.
    1. Kanal E, Barkovich AJ, Bell C, Borgstede JP, Bradley WG, Froelich JW, Gimbel JR, Gosbee JW, Kuhni-Kaminski E, Larson PA, Lester JW, Nyenhuis J, Schaefer DJ, Sebek EA, Weinreb J, Wilkoff BL, Woods TO, Lucey L, Hernandez D. ACR guidance document on MR safe practices. J. Magn. Reson. Imaging. 2013;37:501–530. doi: 10.1002/jmri.24011.
    1. Kandarpa K, Machan L, Durham J. Handbook of interventional radiologic procedures. Philadelphia: Lippincott Williams & Wilkins; 2016.
    1. Karadeli E, Tarhan NC, Ulu EMK, Tutar NU, Basaran O, Coskun M, Niron EA. Evaluation of failing hemodialysis fistulas with multidetector CT angiography: comparison of different 3D planes. Eur. J. Radiol. 2009;69:184–192. doi: 10.1016/j.ejrad.2007.09.014.
    1. Kim SH, Choi BI, Kim KW, Lee KH, Han JK. Extended field-of-view sonography: advantages in abdominal applications. J. Ultrasound Med. 2003;22:385–394. doi: 10.1016/S0301-5629(03)00654-9.
    1. Ko SF, Huang CC, Ng SH, Lee TY, Hsieh MJ, Lee FY, Chen MC, Sheen-Chen SM, Lee CH. MDCT angiography for evaluation of the complete vascular tree of hemodialysis fistulas. Am. J. Roentgenol. 2005;185:1268–1274. doi: 10.2214/AJR.04.1553.
    1. Koning W, de Rotte AAJ, Bluemink JJ, van der Velden TA, Luijten PR, Klomp DWJ, Zwanenburg JJM. MRI of the carotid artery at 7 Tesla: quantitative comparison with 3 Tesla. J. Magn. Reson. Imaging. 2015;41:773–780. doi: 10.1002/jmri.24601.
    1. Kumwenda M, Fluck R. Clinical practice guidelines for vascular access for haemodialysis. Nephron Clin. Pract. 2011;118:c225–c240. doi: 10.1159/000328071.
    1. Little MA, Riordan AO, Lucey B, Farrell M, Lee M, Conlon PJ, Walshe JJ. A prospective study of complications associated with cuffed, tunnelled haemodialysis catheters. Nephrol Dial Transpl. 2001;16:2194–2200. doi: 10.1093/ndt/16.11.2194.
    1. Lombardi M, Bartolozzi C. MRI of the heart and vessels. Springer, New York. 2005 doi: 10.1007/b139059.
    1. Lui K, Yeow K, Wan Y, Cheung Y, Ng K. Antiguo-ultrasound guided puncture of the brachial artery for haemodialysis fistula angiography. Nephrol Dial Transpl. 2001;16:98–101. doi: 10.1093/ndt/16.1.98.
    1. Malovrh M. Native arteriovenous fistula: preoperative evaluation. Am. J. Kidney Dis. 2002;39:1218–1225. doi: 10.1053/ajkd.2002.33394.
    1. Mcgrogan DG, Maxwell AP, Khawaja AZ, Inston NG. CKJ review current tools for prediction of arteriovenous fistula outcomes. Clin Kidney J. 2015;8:282–289. doi: 10.1093/ckj/sfv019.
    1. Meijering EHW, Zuiderveld KJ, Viergever MAXA. Image registration for digital subtraction angiography. Int. J. Comput. Vis. 1999;31:227–246. doi: 10.1023/A:1008074100927.
    1. Mittal V, Srivastava A, Kapoor R, Lal H, Javali T, Sureka S, Patidar N, Arora S, Kumar M. Management of venous hypertension following arteriovenous fistula creation for hemodialysis access. Indian J. Urol. 2016;32:141–148. doi: 10.4103/0970-1591.174779.
    1. Murad MH, Elamin MB, Sidawy AN, Malaga G, Rizvi AZ, Flynn DN, Casey ET, McCausland FR, McGrath MM, Vo DH, El-Zoghby Z, Duncan AA, Tracz MJ, Erwin PJ, Montori VM. Autogenous versus prosthetic vascular access for hemodialysis: a systematic review and meta-analysis. J. Vasc. Surg. 2008;48:34–47. doi: 10.1016/j.jvs.2008.08.044.
    1. Nayak AB, Luhar A, Hanudel M, Gales B, Hall TR, Finn JP, Salusky IB, Zaritsky J. High-resolution, whole-body vascular imaging with ferumoxytol as an alternative to gadolinium agents in a pediatric chronic kidney disease cohort. Pediatr. Nephrol. 2015;30:515–521. doi: 10.1007/s00467-014-2953-x.
    1. Nonnast-Daniel B, Lindert O, Mügge A, Schaeffer J, Koch K-M, Daniel WG, Lieth HVD, Söchtig E, Galanski M, Martin RP. Colour doppler ultrasound assessment of arteriovenous haemodialysis fistulas. Lancet. 1992;339:143–145. doi: 10.1016/0140-6736(92)90209-L.
    1. Nursal TZ, Oguzkurt L, Tercan F, Torer N, Noyan T, Karakayali H, Haberal M. Is routine preoperative ultrasonographic mapping for arteriovenous fistula creation necessary in patients with favorable physical examination findings? Results of a randomized controlled trial. World J. Surg. 2006;30:1100–1107. doi: 10.1007/s00268-005-0586-8.
    1. Özkan B, Güngör D, Mahir Yildirim U, Harman A, Özen Ö, Aytekin C. Endovascular stent placement of juxtaanastomotic stenosis in native arteriovenous fistula after unsuccessful balloon angioplasty. Iran. J. Radiol. 2013;10:133–139. doi: 10.5812/iranjradiol.11386.
    1. Padberg FT, Calligaro KD, Sidawy AN. Complications of arteriovenous hemodialysis access: recognition and management. J. Vasc. Surg. 2008;48:55–80. doi: 10.1016/j.jvs.2008.08.067.
    1. Parmar J, Aslam M, Standfield N. Pre-operative radial arterial diameter predicts early failure of arteriovenous fistula (AVF) for haemodialysis. Eur. J. Vasc. Endovasc. Surg. 2007;33:113–115. doi: 10.1016/j.ejvs.2006.09.001.
    1. Patel ST, Hughes J, Mills JL, Huber TS. Failure of arteriovenous fistula maturation: an unintended consequence of exceeding dialysis outcome quality initiative guidelines for hemodialysis access. J. Vasc. Surg. 2003;38:439–445. doi: 10.1016/S0741-5214(03)00732-8.
    1. Payvandi L, Dyer A, McPherson D, Ades P, Stein J, Liu K, Ferrucci L, Criqui MH, Guralnik JM, Lloyd-Jones D, Kibbe MR, Liang ST, Kane B, Pearce WH, Verta M, McCarthy WJ, Schneider JR, Shroff A, McDermott MM. Physical activity during daily life and brachial artery flow-mediated dilation in peripheral arterial disease. Vasc. Med. 2009;14:193–201. doi: 10.1177/1358863X08101018.
    1. Planken NR, Tordoir JH, Duijm LE, Bosch HC, van der Sande FM, Kooman JP, Haan MW, Leiner T. Magnetic resonance angiographic assessment of upper extremity vessels prior to vascular access surgery: feasibility and accuracy. Eur. Radiol. 2008;18:158–167. doi: 10.1007/s00330-007-0714-y.
    1. Quinn SF, Kim J, Sheley RC. Transluminally placed endovascular grafts for venous lesions in patients on hemodialysis. Cardiovasc. Intervent. Radiol. 2003;26:365–369. doi: 10.1007/s00270-003-2705-y.
    1. Ravani P, Barrett B, Mandolfo S, Brunori G, Cancarini G, Imbasciati E, Malberti F. Factors associated with unsuccessful utilization and early failure of the arterio-venous fistula for hemodialysis. J. Nephrol. 2005;18:188–196.
    1. Robbin ML, Chamberlain NE, Lockhart ME, Gallichio MH, Young CJ, Deierhoi MH, Allon M. Hemodialysis arteriovenous fistula maturity: US evaluation. Radiology. 2002;225:59–64. doi: 10.1148/radiol.2251011367.
    1. Robbin M, Gallichio M, Deierhoi M, Young C, Weber T, Allon M. US vascular mapping before hemodialysis access placement. Radiology. 2000;217:83–88. doi: 10.1148/radiology.217.1.r00oc2883.
    1. Rodby RA. Preventing complications of radiographic contrast media: is there a role for dialysis? Semin. Dial. 2007;20:19–23. doi: 10.1111/j.1525-139X.2007.00233.x.
    1. Salman L, Asif A, Beathard GA. Retrograde angiography and the risk of arteriovenous fistula perforation. Semin. Dial. 2009;22:698–701. doi: 10.1111/j.1525-139X.2009.00648.x.
    1. Saran R. III: NKF-K/DOQI clinical practice guidelines for vascular access: update 2000. Am. J. Kidney Dis. 2001;37:S137–S181. doi: 10.1016/S0272-6386(01)70007-8.
    1. Schuchardt F, Schroeder L, Anastasopoulos C, Markl M, Bäuerle J, Hennemuth A, Drexl J, Valdueza JM, Mader I, Harloff A. In vivo analysis of physiological 3D blood flow of cerebral veins. Eur. Radiol. 2015;25:2371–2380. doi: 10.1007/s00330-014-3587-x.
    1. Seldinger SI. Catheter replacement of the needle in percutaneous arteriography: a new technique. Acta Radiol. 1953;39:368–376. doi: 10.3109/00016925309136722.
    1. Sigovan M, Gasper W, Alley HF, Owens CD, Saloner D. USPIO-enhanced MR angiography of arteriovenous fistulas in patients with renal failure. Radiology. 2012;265:584–590. doi: 10.1148/radiol.12112694.
    1. Silva MBJ, II Hobson RW, Pappas PJ, Jamil Z, Araki CT, Goldberg MC, Gwertzman G, Padberg FTJ. A strategy for increasing use of autogenous hemodialysis access procedures: impact of preoperative noninvasive evaluation. J. Vasc. Surg. 1998;27:302–308. doi: 10.1016/S0741-5214(98)70360-X.
    1. Sorace AG, Robbin ML, Umphrey H, Abts CA, Berry JL, Lockhart ME, Allon M, Hoyt K. Ultrasound measurement of brachial artery elasticity prior to hemodialysis access placement: a pilot study. J. Ultrasound Med. 2012;31:1581–1588. doi: 10.7863/jum.2012.31.10.1581.
    1. Steinman DA. Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann. Biomed. Eng. 2002;30:483–497. doi: 10.1114/1.1467679.
    1. Steinman DA, Taylor CA. Flow imaging and computing: large artery hemodynamics. Ann. Biomed. Eng. 2005;33:1704–1709. doi: 10.1007/s10439-005-8772-2.
    1. Stolic R. Most important chronic complications of arteriovenous fistulas for hemodialysis. Med. Princ. Pract. 2013;22:220–228. doi: 10.1159/000343669.
    1. Strecker C, Harloff A, Wallis W, Markl M. Flow-sensitive 4D MRI of the thoracic aorta: comparison of image quality, quantitative flow, and wall parameters at 1.5 T and 3 T. J. Magn. Reson. Imaging. 2012;36:1097–1103. doi: 10.1002/jmri.23735.
    1. Sung MK, Singh S, Kalra MK. Current status of low dose multi-detector CT in the urinary tract. World J. Radiol. 2011;3:256–265. doi: 10.4329/wjr.v3.i11.256.
    1. Svedlund S, Gan LM. Longitudinal wall motion of the common carotid artery can be assessed by velocity vector imaging. Clin. Physiol. Funct. Imaging. 2011;31:32–38. doi: 10.1111/j.1475-097X.2010.00976.x.
    1. Svedlund S, MingGan L. Longitudinal common carotid artery wall motion is associated with plaque burden in man and mouse. Atherosclerosis. 2011;217:120–124. doi: 10.1016/j.atherosclerosis.2011.02.046.
    1. Taylor CA, Steinman DA. Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions. Ann. Biomed. Eng. 2010;38:1188–1203. doi: 10.1007/s10439-010-9901-0.
    1. Thakor AS, Chung J, Patel R, Cormack R, Legiehn G, Klass D. The use of cone-beam CT in assisting percutaneous translumbar catheter placement into the inferior vena cava. Clin. Radiol. 2015;70:21–24. doi: 10.1016/j.crad.2014.09.009.
    1. Thornton MJ, Ryan R, Varghese JC, Farrell MA, Lucey B, Lee MJ. A three-dimensional gadolinium-enhanced MR venography technique for imaging central veins. Am. J. Roentgenol. 1999;173:999–1003. doi: 10.2214/ajr.173.4.10511166.
    1. Tordoir J, Canaud B, Haage P, Konner K, Basci A, Fouque D, Kooman J, Martin-Malo A, Pedrini L, Pizzarelli F, Tattersall J, Vennegoor M, Wanner C, TerWee P, Vanholder R. EBPG on vascular access. Nephrol. Dial. Transplant. 2007;22:88–117. doi: 10.1093/ndt/gfm021.
    1. Tordoir JHM, de Bruin HG, Hoeneveld H, Eikelboom BC, Kitslaar PJEHM. Duplex ultrasound scanning in the assessment of arteriovenous fistulas created for hemodialysis access: comparison with digital subtraction angiography. J. Vasc. Surg. 1989;10:122–128. doi: 10.1016/0741-5214(89)90344-3.
    1. Tordoir JH, Mickley V. European guidelines for vascular access: clinical algorithms on vascular access for haemodialysis. EDTNA. ERCA. J. 2003;29:131–136. doi: 10.1111/j.1755-6686.2003.tb00293.x.
    1. Toussaint ND, Lau KK, Polkinghorne KR, Kerr PG. Measurement of vascular calcification using CT fistulograms. Nephrol. Dial. Transplant. 2007;22:484–490. doi: 10.1093/ndt/gfl621.
    1. Vachharajani TJ, Asif A. Safety of brachial arteriogram using a 3-French dilator to evaluate nonmaturing arteriovenous fistulae. Semin. Dial. 2014;27:68–71. doi: 10.1111/sdi.12138.
    1. Vassalotti JA, Jennings WC, Beathard GA, Neumann M, Caponi S, Fox CH, Spergel LM. Fistula first breakthrough initiative: targeting catheter last in fistula first. Semin. Dial. 2012;25:303–310. doi: 10.1111/j.1525-139X.2012.01069.x.
    1. V.A.W. Group Clinical practice guidelines for vascular access. Am. J. Kidney Dis. 2006;48:S248–S273. doi: 10.1053/j.ajkd.2006.04.040.
    1. Wakabayashi M, Hanada S, Nakano H, Wakabayashi T. Ultrasound-guided endovascular treatment for vascular access malfunction: results in 4896 cases. J. Vasc. Access. 2013;14:225–230. doi: 10.5301/jva.5000126.
    1. Wang AS, Liang DH, Bech F, Lee JT, Zarins CK, Zhou W, Taylor CA. Validation of a power law model in upper extremity vessels: potential application in ultrasound bleed detection. Ultrasound Med. Biol. 2012;38:692–701. doi: 10.1016/j.ultrasmedbio.2011.12.016.
    1. Ward B, Baker AC, Humphrey VF. Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound. J. Acoust. Soc. Am. 1997;101:143–154. doi: 10.1121/1.417977.
    1. Ward F, Faratro R, McQuillan RF. Ultrasound-guided cannulation of the hemodialysis arteriovenous access. Semin: Dial; 2017.
    1. Ward EV, Galizia MS, Usman A, Popescu AR, Dunkle E, Edelman RR. Comparison of quiescent inflow single-shot and native space for nonenhanced peripheral MR angiography. J. Magn. Reson. Imaging. 2013;38:1531–1538. doi: 10.1002/jmri.24124.
    1. Wells AC, Fernando B, Butler A, Huguet E, Bradley JA, Pettigrew GJ. Selective use of ultrasonographic vascular mapping in the assessment of patients before haemodialysis access surgery. Br. J. Surg. 2005;92:1439–1443. doi: 10.1002/bjs.5151.
    1. Wiese P, Nonnast-Daniel B. Colour doppler ultrasound in dialysis access. Nephrol. Dial. Transplant. 2004;19:1956–1963. doi: 10.1093/ndt/gfh244.
    1. Wilson JM, Jungner YG. Principles and practice of mass screening for disease. Bol. Oficina Sanit. Panam. 1968;65:281–393.
    1. Wong V, Ward R, Taylor J, Selvakumar S, How TV, Bakran A. Factors associated with early failure of arteriovenous fistulae for haemodialysis access. Eur. J. Vasc. Endovasc. Surg. 1996;12:207–213. doi: 10.1016/S1078-5884(96)80108-0.
    1. Ye C, Mao Z, Rong S, Zhang Y, Mei C, Li H, Dong S. Multislice computed tomographic angiography in evaluating dysfunction of the vascular access in hemodialysis patients. Nephron. Clin. Pract. 2006;104:c94–c100. doi: 10.1159/000093996.
    1. Zierler BK, Kirkman TR, Kraiss LW, Reiss WG, Horn JR, Bauer LA, Clowes AW, Kohler TR. Accuracy of duplex scanning for measurement of arterial volume flow. J. Vasc. Surg. 1992;16:520–526. doi: 10.1016/0741-5214(92)90159-6.

Source: PubMed

3
Tilaa