Evidence of Insulin Resistance and Other Metabolic Alterations in Boys with Duchenne or Becker Muscular Dystrophy

Maricela Rodríguez-Cruz, Raúl Sanchez, Rosa E Escobar, Oriana Del Rocío Cruz-Guzmán, Mardia López-Alarcón, Mariela Bernabe García, Ramón Coral-Vázquez, Guadalupe Matute, Ana Claudia Velázquez Wong, Maricela Rodríguez-Cruz, Raúl Sanchez, Rosa E Escobar, Oriana Del Rocío Cruz-Guzmán, Mardia López-Alarcón, Mariela Bernabe García, Ramón Coral-Vázquez, Guadalupe Matute, Ana Claudia Velázquez Wong

Abstract

Aim. Our aim was (1) to determine the frequency of insulin resistance (IR) in patients with Duchenne/Becker muscular dystrophy (DMD/BMD), (2) to identify deleted exons of DMD gene associated with obesity and IR, and (3) to explore some likely molecular mechanisms leading to IR. Materials and Methods. In 66 patients with DMD/BMD without corticosteroids treatment, IR, obesity, and body fat mass were evaluated. Molecules involved in glucose metabolism were analyzed in muscle biopsies. Results show that 18.3%, 22.7%, and 68% were underweight, overweight, or obese, and with high adiposity, respectively; 48.5% and 36.4% presented hyperinsulinemia and IR, respectively. Underweight patients (27.3%) exhibited hyperinsulinemia and IR. Carriers of deletions in exons 45 (OR = 9.32; 95% CI = 1.16-74.69) and 50 (OR = 8.73; 95% CI = 1.17-65.10) from DMD gene presented higher risk for IR than noncarriers. We observed a greater staining of cytoplasmic aggregates for GLUT4 in muscle biopsies than healthy muscle tissue. Conclusion. Obesity, hyperinsulinemia, and IR were observed in DMD/BMD patients and are independent of corticosteroids treatment. Carriers of deletion in exons 45 or 50 from DMD gene are at risk for developing IR. It is suggested that alteration in GLUT4 in muscle fibers from DMD patients could be involved in IR.

Figures

Figure 1
Figure 1
Distribution of the mutations detected in the DMD gene in patients with Duchenne muscular dystrophy/Becker muscular dystrophy (DMD/BMD).
Figure 2
Figure 2
Scatter plot of body fat mass and HOMA-IR in DMD/BMD patients. HOMA-IR, homeostasis model assessment-insulin resistance.
Figure 3
Figure 3
Risk of developing insulin resistance (homeostasis model assessment-insulin resistance > 3.16). P values and odds ratio calculated by logistic regression model. CI, confidence interval. Data adjusted by % body fat mass. E = Exon.
Figure 4
Figure 4
Immunofluorescence analysis of dystrophin (DYS), insulin receptor (IRe), insulin receptor substrate (IRS), and glucose transporter 4 (GLUT4) of healthy individuals and DMD/BMD patients. Immunostaining demonstrated semiabsence of dystrophin on the muscle fibers of the patients. DYS-C, GLUT4, IRe, and IRS are stained in red (arrows) and nuclei are stained in blue (n). Negative control omitted the primary antibody.

References

    1. Bushby K., Finkel R., Birnkrant D. J., et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. The Lancet Neurology. 2010;9(1):77–93. doi: 10.1016/S1474-4422(09)70271-6.
    1. Darras B. T., Blattner P., Harper J. F., Spiro A. J., Alter S., Francke U. Intragenic deletions in 21 Duchenne muscular dystrophy (DMD)/Becker muscular dystrophy (BMD) families studied with the dystrophin cDNA: location of breakpoints on Hind III and BglII exon-containing fragment maps, meiotic and mitotic origin of the mutations. American Journal of Human Genetics. 1988;43:620–629.
    1. Gillard E. F., Chamberlain J. S., Murphy E. G., et al. Molecular and phenotypic analysis of patients with deletions within the deletion-rich region of the Duchenne muscular dystrophy (DMD) gene. The American Journal of Human Genetics. 1989;45(4):507–520.
    1. Coral-Vazquez R., Arenas D., Cisneros D., et al. Pattern of deletions of the dystrophin gene in Mexican Duchenne/Becker muscular dystrophy patients: the use of new designed primers for the analysis of the major deletion “hot spot” region. The American Journal of Medical Genetics. 1997;70:240–246.
    1. Monaco A. P., Bertelson C. J., Liechti-Gallati S., Moser H., Kunkel L. M. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics. 1988;2(1):90–95. doi: 10.1016/0888-7543(88)90113-9.
    1. Ervasti J. M., Ohlendieck K., Kahl S. D., Gaver M. G., Campbell K. P. Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature. 1990;345(6273):315–319. doi: 10.1038/345315a0.
    1. Lapidos K. A., Kakkar R., McNally E. M. The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circulation Research. 2004;94(8):1023–1031. doi: 10.1161/01.RES.0000126574.61061.25.
    1. Hack A. A., Lam M. Y. J., Cordier L., et al. Differential requirement for individual sarcoglycans and dystrophin in the assembly and function of the dystrophin-glycoprotein complex. Journal of Cell Science. 2000;113(14):2535–2544.
    1. Brenman J. E., Chao D. S., Xia H., Aldape K., Bredt D. S. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell. 1995;82(5):743–752. doi: 10.1016/0092-8674(95)90471-9.
    1. Boord J. B., Graber A. L., Christman J. W., Powers A. C. Practical management of diabetes in critically ill patients. The American Journal of Respiratory and Critical Care Medicine. 2001;64:1763–1767.
    1. Mulvey C., Harno E., Keenan A., Ohlendieck K. Expression of the skeletal muscle dystrophin-dystroglycan complex and syntrophin-nitric oxide synthase complex is severely affected in the type 2 diabetic Goto-Kakizaki rat. European Journal of Cell Biology. 2005;84(11):867–883. doi: 10.1016/j.ejcb.2005.06.007.
    1. Allen D. G., Whitehead N. P. Duchenne muscular dystrophy—what causes the increased membrane permeability in skeletal muscle? The International Journal of Biochemistry and Cell Biology. 2011;43(3):290–294. doi: 10.1016/j.biocel.2010.11.005.
    1. McDonald C. M., Carter G. T., Abresch R. T., et al. Body composition and water compartment measurements in boys with Duchenne muscular dystrophy. The American Journal of Physical Medicine and Rehabilitation. 2005;84(7):483–491. doi: 10.1097/01.phm.0000166880.91117.04.
    1. Zanardi M. C., Tagliabue A., Orcesi S., Berardinelli A., Uggetti C., Pichiecchio A. Body composition and energy expenditure in Duchenne muscular dystrophy. European Journal of Clinical Nutrition. 2003;57(2):273–278. doi: 10.1038/sj.ejcn.1601524.
    1. Willig T.-N., Carlier L., Legrand M., Riviere H., Navarro J. Nutritional assessment in Duchenne muscular dystrophy. Developmental Medicine and Child Neurology. 1993;35(12):1074–1082.
    1. Yanovski S. Z., Yanovski J. A. Obesity. The New England Journal of Medicine. 2002;346(8):591–602. doi: 10.1056/NEJMra012586.
    1. Taylor R. W., Jones I. E., Williams S. M., Goulding A. Body fat percentages measured by dual-energy x-ray absorptiometry corresponding to recently recommended body mass index cutoffs for overweight and obesity in children and adolescents aged 3–18 y. The American Journal of Clinical Nutrition. 2002;76(6):1416–1421.
    1. Sambrook J., Russell D. Preparation and analysis of eukaryotic genomic DNA. In: Nolan C., editor. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press; 2001. pp. 6.1–6.31.
    1. Chamberlain J. S., Gibbs R. A., Ranier J. E., Nguyen P. N., Caskey C. T. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Research. 1988;16(23):11141–11156. doi: 10.1093/nar/16.23.11141.
    1. Beggs A. H., Koenig M., Boyce F. M., Kunkel L. M. Detection of 98% of DMD/BMD gene deletions by polymerase chain reaction. Human Genetics. 1990;86(1):45–48.
    1. Rizzo A. C. B., Goldberg T. B. L., Silva C. C., Kurokawa C. S., Nunes H. R. C., Corrente J. E. Metabolic syndrome risk factors in overweight, obese, and extremely obese brazilian adolescents. Nutrition Journal. 2013;12(1, article no. 19) doi: 10.1186/1475-2891-12-19.
    1. Matthews D. R., Hosker J. P., Rudenski A. S., Naylor B. A., Treacher D. F., Turner R. C. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–419. doi: 10.1007/BF00280883.
    1. Keskin M., Kurtoglu S., Kendirci M., Atabek M. E., Yazici C. Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics. 2005;115(4):e500–e503. doi: 10.1542/peds.2004-1921.
    1. García J. J., Rojas G. G., León N. M. Prevalencia de resistencia a la insulina y síndrome metabólico en niños obesos que acuden a la Clínica de Obesidad del Hospital Pediátrico de Sinaloa. Pediatría de México. 2010;12:18–22.
    1. Leroy-Willig A., Willig T. N., Henry-Feugeas M. C., et al. Body composition determined with MR in patients with Duchenne muscular dystrophy, spinal muscular atrophy, and normal subjects. Magnetic Resonance Imaging. 1997;15(7):737–744. doi: 10.1016/S0730-725X(97)00046-5.
    1. Ploug T., van Deurs B., Ai H., Cushman S. W., Ralston E. Analysis of GLUT4 distribution in whole skeletal muscle fibers: identification of distinct storage compartments that are recruited by insulin and muscle contractions. The Journal of Cell Biology. 1998;142(6):1429–1446. doi: 10.1083/jcb.142.6.1429.
    1. Groh S., Zong H., Goddeeris M. M., et al. Sarcoglycan complex. Implications for metabolic defects in muscular dystrophies. Journal of Biological Chemistry. 2009;284(29):19178–19182. doi: 10.1074/jbc.C109.010728.
    1. Freidenberg G. R., Olefsky J. M. Dissociation of insulin resistance and decreased insulin receptor binding in Duchenne muscular dystrophy. Journal of Clinical Endocrinology and Metabolism. 1985;60(2):320–327. doi: 10.1210/jcem-60-2-320.

Source: PubMed

3
Tilaa