Ultrasound shear wave elastography for assessing diaphragm function in mechanically ventilated patients: a breath-by-breath analysis

Quentin Fossé, Thomas Poulard, Marie-Cécile Niérat, Sara Virolle, Elise Morawiec, Jean-Yves Hogrel, Thomas Similowski, Alexandre Demoule, Jean-Luc Gennisson, Damien Bachasson, Martin Dres, Quentin Fossé, Thomas Poulard, Marie-Cécile Niérat, Sara Virolle, Elise Morawiec, Jean-Yves Hogrel, Thomas Similowski, Alexandre Demoule, Jean-Luc Gennisson, Damien Bachasson, Martin Dres

Abstract

Background: Diaphragm dysfunction is highly prevalent in mechanically ventilated patients. Recent work showed that changes in diaphragm shear modulus (ΔSMdi) assessed using ultrasound shear wave elastography (SWE) are strongly related to changes in Pdi (ΔPdi) in healthy subjects. The aims of this study were to investigate the relationship between ΔSMdi and ΔPdi in mechanically ventilated patients, and whether ΔSMdi is responsive to change in respiratory load when varying the ventilator settings.

Methods: A prospective, monocentric study was conducted in a 15-bed ICU. Patients were included if they met the readiness-to-wean criteria. Pdi was continuously monitored using a double-balloon feeding catheter orally introduced. The zone of apposition of the right hemidiaphragm was imaged using a linear transducer (SL10-2, Aixplorer, Supersonic Imagine, France). Ultrasound recordings were performed under various pressure support settings and during a spontaneous breathing trial (SBT). A breath-by-breath analysis was performed, allowing the direct comparison between ΔPdi and ΔSMdi. Pearson's correlation coefficients (r) were used to investigate within-individual relationships between variables, and repeated measure correlations (R) were used for determining overall relationships between variables. Linear mixed models were used to compare breathing indices across the conditions of ventilation.

Results: Thirty patients were included and 930 respiratory cycles were analyzed. Twenty-five were considered for the analysis. A significant correlation was found between ΔPdi and ΔSMdi (R = 0.45, 95% CIs [0.35 0.54], p < 0.001). Individual correlation displays a significant correlation in 8 patients out of 25 (r = 0.55-0.86, all p < 0.05, versus r = - 0.43-0.52, all p > 0.06). Changing the condition of ventilation similarly affected ΔPdi and ΔSMdi. Patients in which ΔPdi-ΔSMdi correlation was non-significant had a faster respiratory rate as compared to that of patient with a significant ΔPdi-ΔSMdi relationship (median (Q1-Q3), 25 (18-33) vs. 21 (15-26) breaths.min-1, respectively).

Conclusions: We demonstrate that ultrasound SWE may be a promising surrogate to Pdi in mechanically ventilated patients. Respiratory rate appears to negatively impact SMdi measurement. Technological developments are needed to generalize this method in tachypneic patients.

Trial registration: NCT03832231 .

Keywords: Diaphragm; Diaphragm dysfunction; Intensive care unit; Mechanical ventilation; Shear wave elastography; Transdiaphragmatic pressure; Ultrasound imaging.

Conflict of interest statement

JLG is a scientific consultant for Supersonic Imagine, Aix-en-Provence, France. MD received personal fees from Lungpacer Medical Inc., Vancouver, Canada. AD reports personal fees from Medtronic, grants, personal fees and non-financial support from Philips, personal fees from Baxter, personal fees from Hamilton, personal fees and non-financial support from Fisher & Paykel, grants from French Ministry of Health, personal fees from Getinge, grants, personal fees and non-financial support from Respinor, grants, personal fees and non-financial support from Lungpacer, personal fees from Lowenstein, outside the submitted work. The remaining authors do not declare any competing interest.

Figures

Fig. 1
Fig. 1
Typical ultrasound image obtained during shear wave elastography imaging of the diaphragm. Shear modulus map obtained from ultrasound shear wave elastography overlaid with standard ultrasound B-Mode during intercostal scanning of the diaphragm at the right zone of apposition
Fig. 2
Fig. 2
Flowchart of the study
Fig. 3
Fig. 3
Diaphragm shear modulus and transdiaphragmatic pressure across different breathing conditions. PTPdi, pressure–time product of transdiaphragmatic pressure (Panel a); ΔPdi, inspiratory change in transdiaphragmatic pressure (Panel b); ΔSMdi, inspiratory change in diaphragm shear modulus assessed using ultrasound shear wave elastography (Panel c). The error bars correspond to 25th and 75th percentile. PS, pressure support ventilation with baseline inspiratory support and positive end-expiratory pressure; PS+25%, PS with inspiratory pressure support increased by 25%; PS-25%, PS with inspiratory pressure support decreased by 25%; PSZEEP, PS with baseline inspiratory support and positive end-expiratory pressure set at 0; SBT, spontaneous breathing trial; SBT Start, start of the SBT; SBT End, end of the SBT. a Significantly different from PS+25%; b Significantly different from PS; c significantly different from PS−25%; Significantly different from PSZEEP (all p < 0.05)
Fig. 4
Fig. 4
Relationship between changes in diaphragm shear modulus and changes in transdiaphragmatic pressure. Averaged data (panel a, data are shown as median (Q1–Q3)) and all data points with individual and overall linear regression lines (panel b). Panel c displays the individual linear regressions in patients with a significant ΔPdi-ΔSMdi correlation (p < 0.05). Panel d displays the individual linear regressions in patients with no significant ΔPdi-ΔSMdi correlation (p > 0.05). ΔPdi, inspiratory change in transdiaphragmatic pressure; ΔSMdi, inspiratory change in diaphragm shear modulus assessed using ultrasound shear wave elastography; PS, pressure support ventilation with baseline inspiratory support and positive end-expiratory pressure; PS+25%, PS with inspiratory pressure support increased by 25%; PS−25%, PS with inspiratory pressure support decreased by 25%; PSZEEP, PS with baseline inspiratory support and positive end-expiratory pressure set at 0; SBT Start, start of the spontaneous breathing trial. In panel a., only cycles gathered at the end of each condition and at the start of SBT were used. In panel b, cycles gathered at all time-points were used
Fig. 5
Fig. 5
Physiological variables and diaphragm shear modulus over time in two patients. Temporal evolution of airway flow, esophageal (Pes), gastric (Pga) and transdiaphragmatic (Pdi) pressures, and diaphragm shear modulus (SMdi) in a patient with a significant ΔPdi–ΔSMdi relationship (r = 0.81, p = 0.002, panel a) and in a patient with a non-significant ΔPdi–ΔSMdi relationship (r = 0.14, p = 0.643, panel b). Respiratory rates were of 12 and 33 breaths.min−1 for panel a and b, respectively

References

    1. Goligher EC, Ferguson ND, Brochard LJ. Clinical challenges in mechanical ventilation. Lancet. 2016;387(10030):1856–1866. doi: 10.1016/S0140-6736(16)30176-3.
    1. Demoule A, Jung B, Prodanovic H, Molinari N, Chanques G, Coirault C, Matecki S, Duguet A, Similowski T, Jaber S. Diaphragm dysfunction on admission to the intensive care unit: prevalence, risk factors, and prognostic impact-a prospective study. Am J Respir Crit Care Med. 2013;188(2):213–219. doi: 10.1164/rccm.201209-1668OC.
    1. Goligher EC, Dres M, Fan E, Rubenfeld GD, Scales DC, Herridge MS, Vorona S, Sklar MC, Rittayamai N, Lanys A, et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med. 2018;197(2):204–213. doi: 10.1164/rccm.201703-0536OC.
    1. Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–1335. doi: 10.1056/NEJMoa070447.
    1. Hermans G, Agten A, Testelmans D, Decramer M, Gayan-Ramirez G. Increased duration of mechanical ventilation is associated with decreased diaphragmatic force: a prospective observational study. Crit Care. 2010;14(4):R127. doi: 10.1186/cc9094.
    1. Jaber S, Petrof BJ, Jung B, Chanques G, Berthet JP, Rabuel C, Bouyabrine H, Courouble P, Koechlin-Ramonatxo C, Sebbane M, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;183(3):364–371. doi: 10.1164/rccm.201004-0670OC.
    1. Dres M, Demoule A. Monitoring diaphragm function in the ICU. Curr Opin Crit Care. 2020;26(1):18–25. doi: 10.1097/MCC.0000000000000682.
    1. Dres M, Dubé BP, Mayaux J, Delemazure J, Reuter D, Brochard L, Similowski T, Demoule A. Coexistence and impact of limb muscle and diaphragm weakness at time of liberation from mechanical ventilation in medical intensive care unit patients. Am J Respir Crit Care Med. 2017;195(1):57–66. doi: 10.1164/rccm.201602-0367OC.
    1. Dres M, Goligher EC, Dubé BP, Morawiec E, Dangers L, Reuter D, Mayaux J, Similowski T, Demoule A. Diaphragm function and weaning from mechanical ventilation: an ultrasound and phrenic nerve stimulation clinical study. Ann Intensive Care. 2018;8(1):53. doi: 10.1186/s13613-018-0401-y.
    1. Jung B, Moury PH, Mahul M, de Jong A, Galia F, Prades A, Albaladejo P, Chanques G, Molinari N, Jaber S. Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure. Intensive Care Med. 2016;42(5):853–861. doi: 10.1007/s00134-015-4125-2.
    1. Kim WY, Suh HJ, Hong SB, Koh Y, Lim CM. Diaphragm dysfunction assessed by ultrasonography: influence on weaning from mechanical ventilation. Crit Care Med. 2011;39(12):2627–2630. doi: 10.1097/CCM.0b013e3182266408.
    1. Schepens T, Goligher EC. Lung- and diaphragm-protective ventilation in acute respiratory distress syndrome: rationale and challenges. Anesthesiology. 2019;130(4):620–633. doi: 10.1097/ALN.0000000000002605.
    1. Goligher EC, Dres M, Patel BK, Sahetya SK, Beitler JR, Telias I, Yoshida T, Vaporidi K, Grieco DL, Schepens T et al. Lung and diaphragm-protective ventilation. Am J Respir Crit Care Med. 2020.
    1. Laveneziana P, Albuquerque A, Aliverti A, Babb T, Barreiro E, Dres M, Dube BP, Fauroux B, Gea J, Guenette JA, et al. ERS statement on respiratory muscle testing at rest and during exercise. Eur Respir J. 2019;53(6):1801214. doi: 10.1183/13993003.01214-2018.
    1. Ueki J, De Bruin PF, Pride NB. In vivo assessment of diaphragm contraction by ultrasound in normal subjects. Thorax. 1995;50(11):1157–1161. doi: 10.1136/thx.50.11.1157.
    1. Dubé BP, Dres M, Mayaux J, Demiri S, Similowski T, Demoule A. Ultrasound evaluation of diaphragm function in mechanically ventilated patients: comparison to phrenic stimulation and prognostic implications. Thorax. 2017;72(9):811–818. doi: 10.1136/thoraxjnl-2016-209459.
    1. Tuinman PR, Jonkman AH, Dres M, Shi ZH, Goligher EC, Goffi A, Korte C, Demoule A, Heunks L. Respiratory muscle ultrasonography: methodology, basic and advanced principles and clinical applications in ICU and ED patients-a narrative review. Intensive Care Med. 2020. 46(4): 594–605.
    1. DiNino E, Gartman EJ, Sethi JM, McCool FD. Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation. Thorax. 2014;69(5):423–427. doi: 10.1136/thoraxjnl-2013-204111.
    1. Goligher EC, Laghi F, Detsky ME, Farias P, Murray A, Brace D, Brochard LJ, Bolz SS, Rubenfeld GD, Kavanagh BP, et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med. 2015;41(4):642–649. doi: 10.1007/s00134-015-3687-3.
    1. Gennisson JL, Deffieux T, Fink M, Tanter M. Ultrasound elastography: principles and techniques. Diagn Interv Imaging. 2013;94(5):487–495. doi: 10.1016/j.diii.2013.01.022.
    1. Gennisson JL, Cornu C, Catheline S, Fink M, Portero P. Human muscle hardness assessment during incremental isometric contraction using transient elastography. J Biomech. 2005;38(7):1543–1550. doi: 10.1016/j.jbiomech.2004.07.013.
    1. Hug F, Tucker K, Gennisson JL, Tanter M, Nordez A. Elastography for muscle biomechanics: toward the estimation of individual muscle force. Exerc Sport Sci Rev. 2015;43(3):125–133. doi: 10.1249/JES.0000000000000049.
    1. Bachasson D, Dres M, Nierat MC, Gennisson JL, Hogrel JY, Doorduin J, Similowski T. Diaphragm shear modulus reflects transdiaphragmatic pressure during isovolumetric inspiratory efforts and ventilation against inspiratory loading. J Appl Physiol (1985) 2019. 126(3):699–707.
    1. Flatres A, Aarab Y, Nougaret S, Garnier F, Larcher R, Amalric M, Klouche K, Etienne P, Subra G, Jaber S, et al. Real-time shear wave ultrasound elastography: a new tool for the evaluation of diaphragm and limb muscle stiffness in critically ill patients. Crit Care. 2020;24(1):34. doi: 10.1186/s13054-020-2745-6.
    1. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007;370(9596):1453–1457. doi: 10.1016/S0140-6736(07)61602-X.
    1. Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, Pearl R, Silverman H, Stanchina M, Vieillard-Baron A, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29(5):1033–1056. doi: 10.1183/09031936.00010206.
    1. Baydur A, Behrakis PK, Zin WA, Jaeger M, Milic-Emili J. A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis. 1982;126(5):788–791.
    1. Sklar MC, Burns K, Rittayamai N, Lanys A, Rauseo M, Chen L, Dres M, Chen GQ, Goligher EC, Adhikari NKJ et al: Effort to breathe with various spontaneous breathing trial techniques: a physiologic meta-analysis. Am J Respir Crit Care Med 2017. 195(11):1477–1485.
    1. Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, Pelosi P, Talmor D, Grasso S, Chiumello D, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014;189(5):520–531. doi: 10.1164/rccm.201312-2193CI.
    1. Mauri T, Yoshida T, Bellani G, Goligher EC, Carteaux G, Rittayamai N, Mojoli F, Chiumello D, Piquilloud L, Grasso S, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42(9):1360–1373. doi: 10.1007/s00134-016-4400-x.
    1. Vivier E, Mekontso Dessap A, Dimassi S, Vargas F, Lyazidi A, Thille AW, Brochard L. Diaphragm ultrasonography to estimate the work of breathing during non-invasive ventilation. Intensive Care Med. 2012;38(5):796–803. doi: 10.1007/s00134-012-2547-7.
    1. Multz AS, Aldrich TK, Prezant DJ, Karpel JP, Hendler JM. Maximal inspiratory pressure is not a reliable test of inspiratory muscle strength in mechanically ventilated patients. Am Rev Respir Dis. 1990;142(3):529–532. doi: 10.1164/ajrccm/142.3.529.
    1. Krueger C, Tian L. A comparison of the general linear mixed model and repeated measures ANOVA using a dataset with multiple missing data points. Biol Res Nurs. 2004;6(2):151–157. doi: 10.1177/1099800404267682.
    1. Bakdash JZ, Marusich LR. Repeated measures correlation. Front Psychol. 2017;8:456. doi: 10.3389/fpsyg.2017.00456.
    1. R Core Team: R: A Language and Environment for Statistical Computing. In. Vienna, Austria: R Foundation for Statistical Computing; 2020.
    1. Chino K, Ohya T, Katayama K, Suzuki Y. Diaphragmatic shear modulus at various submaximal inspiratory mouth pressure levels. Respir Physiol Neurobiol. 2018;252–253:52–57. doi: 10.1016/j.resp.2018.03.009.
    1. Kijanka P, Ambrozinski L, Urban MW. Two point method for robust shear wave phase velocity dispersion estimation of viscoelastic materials. Ultrasound Med Biol. 2019;45(9):2540–2553. doi: 10.1016/j.ultrasmedbio.2019.04.016.
    1. Dres M, Demoule A. Monitoring diaphragm function in the ICU. Current Opinion in Critical Care. 2020;26(1):18–25. doi: 10.1097/MCC.0000000000000682.
    1. Tuinman PR, Jonkman AH, Dres M, Shi ZH, Goligher EC, Goffi A, de Korte C, Demoule A, Heunks L Respiratory muscle ultrasonography: methodology, basic and advanced principles and clinical applications in ICU and ED patients-a narrative review. Intensive Care Med 2020.
    1. Fayssoil A, Nguyen LS, Ogna A, Stojkovic T, Meng P, Mompoint D, Carlier R, Prigent H, Clair B, Behin A, et al. Diaphragm sniff ultrasound: normal values, relationship with sniff nasal pressure and accuracy for predicting respiratory involvement in patients with neuromuscular disorders. PLoS ONE. 2019;14(4):e0214288. doi: 10.1371/journal.pone.0214288.
    1. Oppersma E, Hatam N, Doorduin J, van der Hoeven JG, Marx G, Goetzenich A, Fritsch S, Heunks LMA, Bruells CS. Functional assessment of the diaphragm by speckle tracking ultrasound during inspiratory loading. J Appl Physiol (1985) 2017, 123(5):1063–1070.
    1. Jubran A, Tobin MJ. Pathophysiologic basis of acute respiratory distress in patients who fail a trial of weaning from mechanical ventilation. Am J Respir Crit Care Med. 1997;155(3):906–915. doi: 10.1164/ajrccm.155.3.9117025.
    1. Tobin MJ, Laghi F, Jubran A. Ventilatory failure, ventilator support, and ventilator weaning. Compr Physiol. 2012;2(4):2871–2921.
    1. Jubran A, Tobin MJ. Passive mechanics of lung and chest wall in patients who failed or succeeded in trials of weaning. Am J Respir Crit Care Med. 1997;155(3):916–921. doi: 10.1164/ajrccm.155.3.9117026.

Source: PubMed

3
Tilaa