OMIP-054: Broad Immune Phenotyping of Innate and Adaptive Leukocytes in the Brain, Spleen, and Bone Marrow of an Orthotopic Murine Glioblastoma Model by Mass Cytometry

Sophie A Dusoswa, Jan Verhoeff, Juan J Garcia-Vallejo, Sophie A Dusoswa, Jan Verhoeff, Juan J Garcia-Vallejo

Abstract

formula image

Figures

Figure 1
Figure 1
Identification of main leukocyte populations and CD45− cells in murine glioblastoma by manual gating and representation by viSNE. (A) Example gating of cell subsets. (B) viSNE embeddings color‐coded for lineage markers. (C) Populations gated in A are color‐coded according to the legend inset and displayed in the viSNE map. (D) Heatmap describing relative expression of lineage markers across the populations described in A, B, and C. (E) Heatmap displaying median mass intensity (ArcSinH(5)‐transformed) of activation and migration markers across the populations described in A, B, and C.

References

    1. Zunder ER, Finck R, Behbehani GK, Amir EAD, Krishnaswamy S, Gonzalez VD, Lorang CG, Bjornson Z, Spitzer MH, Bodenmiller B, et al. Palladium‐based mass tag cell barcoding with a doublet‐filtering scheme and single‐cell deconvolution algorithm. Nat Protoc 2015;10:316–333.
    1. Korin B, Ben‐Shaanan TL, Schiller M, Dubovik T, Azulay‐Debby H, Boshnak NT, Koren T, Rolls A. High‐dimensional, single‐cell characterization of the brain's immune compartment. Nat Neurosci 2017;20:1300–1309. 10.1038/nn.4610.
    1. Ajami B, Samusik N, Wieghofer P, Ho PP, Crotti A, Bjornson Z, Prinz M, Fantl WJ, Nolan GP, Steinman L. Single‐cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat Neurosci 2018;21:541–551. 10.1038/s41593-018-0100-x.
    1. Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, et al. High‐dimensional single‐cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 2018;48:380–395.
    1. Bowman RL, Klemm F, Akkari L, Pyonteck SM, Sevenich L, Quail DF, Dhara S, Simpson K, Gardner EE, Iacobuzio‐Donahue CA, et al. Macrophage ontogeny underlies differences in tumor‐specific education in brain malignancies. Cell Rep 2016;17:2445–2459.
    1. Chen Z, Feng X, Herting CJ, Garcia VA, Nie K, Pong WW, Rasmussen R, Dwivedi B, Seby S, Wolf SA, et al. Cellular and molecular identity of tumor‐associated macrophages in glioblastoma. Cancer Res 2017;77:2266–2278.
    1. Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, Mulinyawe SB, Bohlen CJ, Adil A, Tucker A, et al. New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A 2016;113:E1738–E1746.
    1. Chen DS, Mellman I. Oncology meets immunology: The cancer‐immunity cycle. Immunity 2013;39:1–10.
    1. Galluzzi L, Vacchelli E, Bravo‐San Pedro JM, et al. Classification of current anticancer immunotherapies. Oncotarget 2014;5:12472–12508.
    1. Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol 2018;15:422–442. 10.1038/s41571-018-0003-5.
    1. Maxwell R, Jackson CM, Lim M. Clinical trials investigating immune checkpoint blockade in Glioblastoma. Curr Treat Options Oncol 2017;18:51.
    1. Wurdinger T, Deumelandt K, van der Vliet HJ, Wesseling P, de Gruijl TD. Mechanisms of intimate and long‐distance cross‐talk between glioma and myeloid cells: How to break a vicious cycle. Biochim Biophys Acta Rev Cancer 2014;1846:560–575.
    1. Broekman ML, Maas SLN, Abels ER, Mempel TR, Krichevsky AM, Breakefield XO. Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol 2018;14:482–495. 10.1038/s41582-018-0025-8.
    1. Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell 2017;31:326–341.
    1. Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 2015;19:20–27.
    1. Spitzer MH, Nolan GP. Mass cytometry: Single cells, many features. Cell 2016;165:780–791.
    1. Hussain RZ, Miller‐Little WA, Doelger R, Cutter GR, Loof N, Cravens PD, Stüve O. Defining standard enzymatic dissociation methods for individual brains and spinal cords in EAE. Neurol Neuroimmunol NeuroInflamm 2018;5:1–10.
    1. Finck R, Simonds EF, Jager A, Krishnaswamy S, Sachs K, Fantl W, Pe'er D, Nolan GP, Bendall SC. Normalization of mass cytometry data with bead standards. Cytometry Part A 2013;83A:483–494.
    1. Unsworth A, Anderson R, Haynes N, Britt K. OMIP‐032: Two multi‐color immunophenotyping panels for assessing the innate and adaptive immune cells in the mouse mammary gland. Cytometry Part A 2016;89A:527–530.
    1. Nemoto S, Mailloux AW, Kroeger J, Mulé JJ. OMIP‐031: Immunologic checkpoint expression on murine effector and memory T‐cell subsets. Cytometry Part A 2016;89A:427–429.
    1. Baumgart S, Peddinghaus A, Schulte‐Wrede U, Mei HE, Grützkau A. OMIP‐034: Comprehensive immune phenotyping of human peripheral leukocytes by mass cytometry for monitoring immunomodulatory therapies. Cytometry Part A 2017;91A:34–38.
    1. Brodie TM, Tosevski V, Medová M. OMIP‐045: Characterizing human head and neck tumors and cancer cell lines with mass cytometry. Cytometry Part A 2018;93A:406–410.
    1. Jaracz‐Ros A, Hémon P, Krzysiek R, Bachelerie F, Schlecht‐Louf G, Gary‐Gouy H. OMIP‐048 MC: Quantification of calcium sensors and channels expression in lymphocyte subsets by mass cytometry. Cytometry A 2018;93:681–684.

Source: PubMed

3
Tilaa