Passive Microwave Radiometry for the Diagnosis of Coronavirus Disease 2019 Lung Complications in Kyrgyzstan

Batyr Osmonov, Lev Ovchinnikov, Christopher Galazis, Berik Emilov, Mustafa Karaibragimov, Meder Seitov, Sergey Vesnin, Alexander Losev, Vladislav Levshinskii, Illarion Popov, Chingiz Mustafin, Turat Kasymbekov, Igor Goryanin, Batyr Osmonov, Lev Ovchinnikov, Christopher Galazis, Berik Emilov, Mustafa Karaibragimov, Meder Seitov, Sergey Vesnin, Alexander Losev, Vladislav Levshinskii, Illarion Popov, Chingiz Mustafin, Turat Kasymbekov, Igor Goryanin

Abstract

The global spread of severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19), could be due to limited access to diagnostic tests and equipment. Currently, most diagnoses use the reverse transcription polymerase chain reaction (RT-PCR) and chest computed tomography (CT). However, challenges exist with CT use due to infection control, lack of CT availability in low- and middle-income countries, and low RT-PCR sensitivity. Passive microwave radiometry (MWR), a cheap, non-radioactive, and portable technology, has been used for cancer and other diseases' diagnoses. Here, we tested MWR use first time for the early diagnosis of pulmonary COVID-19 complications in a cross-sectional controlled trial in order to evaluate MWR use in hospitalized patients with COVID-19 pneumonia and healthy individuals. We measured the skin and internal temperature using 30 points identified on the body, for both lungs. Pneumonia and lung damage were diagnosed by both CT scan and doctors' diagnoses (pneumonia+/pneumonia-). COVID-19 was determined by RT-PCR (covid+/covid-). The best MWR results were obtained for the pneumonia-/covid- and pneumonia+/covid+ groups. The study suggests that MWR could be used for diagnosing pneumonia in COVID-19 patients. Since MWR is inexpensive, its use will ease the financial burden for both patients and countries. Clinical Trial Number: NCT04568525.

Keywords: COVID-19; CT; RT-PCR; infrared radiometry (IR); passive microwave radiometry (MWR).

Conflict of interest statement

The authors declare no conflict of interest. Sergey Vesnin is the General Director of the RES LTD company, the producer of the MWR2020 (RTM-01-RES) device. Lev Ovchinnikov is affiliated with “Medical Microwave Radiometry LTD, UK”.

Figures

Figure 1
Figure 1
MWR2020 (former RTM-01-RES).
Figure 2
Figure 2
Box plot distribution of the clinical parameters. SpO2 is blood oxygen saturation, Aux is auxiliary (armpit) temperature, Dmg is overall ercentage of lung damage assesment based on CT scan.
Figure 3
Figure 3
Measurement points.
Figure 4
Figure 4
Measurement points.
Figure 5
Figure 5
The measurement scheme in the software “RTM-Diagnosis”.
Figure 6
Figure 6
Typical microwave image of coronavirus disease 2019 (COVID-19) in the left and right lungs. Large internal temperature difference is shown in blue (low temperature, due to fibrosis) and red (high temperature, due to inflammation).
Figure 7
Figure 7
Typical microwave image of the healthy lungs showing no blue or red areas.
Figure 8
Figure 8
Typical microwave image of non-COVID-19 pneumonia showing red (inflammation area only in the left lung) and no blue areas (due to fibrosis in both lungs).

References

    1. Kant S.K., Kumar M.A., Amos L. Comprehensive update on current outbreak of novel coronavirus infection (2019-nCoV) Ann. Transl. Med. 2020;8:393.
    1. Liu K., Chen Y., Lin R., Han K. Clinical feature of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J. Infect. 2020;80:e14. doi: 10.1016/j.jinf.2020.03.005.
    1. Lake Mary A. What we know so far: COVID-19 current clinical knowledge and research. Clin. Med. 2020;20:124. doi: 10.7861/clinmed.2019-coron.
    1. Zhou S., Wang Y., Zhu T., Xia L. LCT features of coronavirus disease 2019 (COVID-19) pneumonia in 62 patients in Wuhan, China. AJR. Am. J. Roentgenol. 2020;1–8:1287. doi: 10.2214/AJR.20.22975.
    1. Chung M., Bernheim A., Mei X., Zhang N., Cui J., Jacobi A., Li K., Li S., Shan H., Xu W., et al. CT imaging features of 2019 novel coronavirus (2019–, nCoV) Radiol. Febr. 2020;295:202–207. doi: 10.1148/radiol.2020200230.
    1. ACR Recommendations for the Use of Chest Radiography and Computed Tomography (CT) for Suspected COVID-19 Infection|American College of Radiology. [(accessed on 12 December 2020)];2020 Available online: .
    1. Buyun X., Yangbo X., Jiahao P., Zheng Z., Tang W., Sun Y., Xu C., Peng F. Chest CT for detecting COVID-19: A systematic review and meta-analysis of diagnostic accuracy. Eur. Radiol. 2020;30:5720–5727. doi: 10.1007/s00330-020-06934-2.
    1. Watson J., Whiting P.F., Brush J.E. Interpreting a covid-19 test result. BMJ. 2020;369:m1808. doi: 10.1136/bmj.m1808.
    1. Chinese National Health Commission . Chinese Clinical Guidance for COVID-19 Pneumonia Diagnosis and Treatment. 7th ed. American College of Cardiology; Washington, DC, USA: 2020.
    1. Hope M.D., Raptis C.A., Henry T.S. Chest computed tomography for detection of coronavirus Disease 2019 (COVID-19): Don’t rush the science. Ann. Internal Med. 2020;173:147. doi: 10.7326/M20-1382.
    1. Raptis C.A., Hammer M.M., Short R.G., Hope M.D., Kligerman S.J., Shah A., Bhalla S., Henry T.S., Jeudy J., Filev P.D., et al. Chest CT and coronavirus disease (COVID-19): A critical review of the literature to date. Am. J. Roentgenol. 2020;1–4:8. doi: 10.2214/AJR.20.23202.
    1. Hope M.D., Raptis C.A., Shah A., Hammer M.M., Henry T.S. Six signatories. A role for CT in COVID-19? What data really tell us so far. Lancet. 2020;395:1189. doi: 10.1016/S0140-6736(20)30728-5.
    1. Fang Y., Zhang H., Xie J., Lin M., Ying L., Pang P., Ji W. Sensitivity of chest CT for COVID-19: Comparison to RT-PCR. Radiology. 2020;296:E115. doi: 10.1148/radiol.2020200432.
    1. Youxin W., Haifeng H., Wenrui W., Wei W. Combination of CT and RT-PCR in the screening or diagnosis of COVID-19. J. Glob. Health. 2020;10:010347.
    1. Rubin G.D., Ryerson C.J., Haramati L.B., Goldin J., Humnert M., Mazzone P.J., Wells A.U., Richeldi L., Prokop M., Inoue Y., et al. The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society. Radiology. 2020;296:172–180. doi: 10.1148/radiol.2020201365.
    1. Simpson S., Kay F.U., Abbara S., Bhalla S., Chung J.H., Chung M., Henry T.S., Kanne J.P., Kligerman S., Ko J.P., et al. Radiological Society of North America expert consensus statement on reporting chest CT findings related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA. J. Thorac. Imaging. 2020;35:219. doi: 10.1097/RTI.0000000000000524.
    1. Arevalo-Rodriguez I., Buitrago-Garcia D., Simancas-Racines D., Zambrano-Achig P., del Campo R., Ciapponi A., Sued O., Martinez-García L., Rutjes A.W., Low N., et al. False-negative results of initial RT-PCR assays for COVID-19: A systematic review. medRXIV. 2020;15:e0242958.
    1. Wang W., Xu Y., Gao R., Lu R., Han K., Wu G., Tan W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020;323:1843. doi: 10.1001/jama.2020.3786.
    1. Goryanin I., Karbainov S., Shevelev O., Tarakanov A., Redpath K., Vesnin S., Ivanov Y. Passive microwave radiometry in biomedical studies. Drug Discov. Today. 2020;25:757. doi: 10.1016/j.drudis.2020.01.016.
    1. Iskander M.F., Durney C.H., Sr., Grange T., Smith C.S. Radiometric technique for measuring changes in lung water. IEEE Trans. Microw. Theory Tech. 1984;32:554–556. doi: 10.1109/TMTT.1984.1132726.
    1. Iskander M.F., Durney C.H. Microwave Methods of measuring Changes in Lung water. J. Microw. Power Electromagn. Energy. 1983;18:265. doi: 10.1080/16070658.1983.11689331.
    1. Leroy Y., Bocquet B., Mamouni A. Non-invasive microwave radiometry thermometry. Physiol. Meas. 1998;19:127. doi: 10.1088/0967-3334/19/2/001.
    1. Ginzburg L.I., Glagolev N.A. Radiothermometry in the diagnosis of lung diseases. Electr. Industry USSR. 1987;1:27–58. (In Russian)
    1. World Health Organization . Global Surveillance for COVID-19 Disease Caused by Human Infection with Novel Coronavirus (COVID-19): Interim Guidance. WHO; Geneva, Switzerland: 2020.
    1. Tarakanov A., Vesnin S., Efremov V., Roberts N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992;46:175–185.
    1. Tarakanov A.V., Tarakanov A.A., Vesnin S., Efremov V.V., Roberts N., Goryanin I. Influence of Ambient Temperature on Recording of Skin and Deep Tissue Temperature in Region of Lumbar Spine. Eur. J. Transl. Clin. Med. 2020;7:21–26. doi: 10.5334/ejmcm.274.Altman.
    1. [(accessed on 5 October 2020)]; Available online: .
    1. [(accessed on 12 May 2019)]; Available online:
    1. Galazis C., Vesnin S., Goryanin I. Application of artificial intelligence in microwave radiometry (MWR) Bioinformatics. 2019;3:112–122.
    1. Levshinskii V., Galazis C., Ovchinnikov L., Vesnin S., Losev A., Goryanin I. Application of Data Mining and Machine Learning in Microwave Radiometry (MWR) In: Roque A., Tomczyk A., De Maria E., Putze F., Moucek R., Fred A., Gamboa H., editors. International Joint Conference on Biomedical Engineering Systems and Technologies BIOSTEC 2019—Biomedical Engineering Systems and Technologies. Volume 1211 Springer; Cham, Switzerland: 2020.
    1. Ai T., Yang Z., Hou H., Zhan C., Chen C., Tao Q., Sun Z., Xia L., Lv W. Correlation of chest CT and RT-PCR testing in coronavirus Disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology. 2020;296:E32–E40. doi: 10.1148/radiol.2020200642.
    1. Eng J., Bluemke D.A. Imaging publications in the COVID-19 pandemic: Applying new research results to clinical practice. Radiology. 2020;297:E228. doi: 10.1148/radiol.2020201724.
    1. De Smet K., De Smet D., Ryckaert T., Laridon E., Heremans B., Vandenbulcke E., Demedts I., Bouckaert B., Martens G.A., Gryspeerdt S. Diagnostic Performance of Chest CT for SARS-CoV-2 Infection in Individuals with or without COVID-19 Symptoms. Radiology. 2021;298:E30–E37. doi: 10.1148/radiol.2020202708.
    1. Zampeli E., Raftakis I., Michelongona A., Nikolaou C., Elezoglou A., Antoniadis C., Toutouzas K., Sfikakis P.P. AB1250 Measurement of joint temperature by microwave radiometry as a novel and simple method for the detection of synovial inflammation: A pilot study. Ann. Rheum. Dis. 2013;71(Suppl. 3):709.5. doi: 10.1136/annrheumdis-2012-eular.1246.
    1. Toutouzas K., Synetos A., Drakopoulou M., Tsiamis E., Karanasos A., Michelongona A., Grassos H., Stefanadi E., Siores E., Stefanadis C. An experimental study with microwave thermography for the assessment of atherosclerotic vascular disease. Am. Heart Assoc. 2009;120:S1113.
    1. Zamechnik T., Losev A., Petrenko A. Guided Classifier in the Diagnosis of Breast Cancer According to Microwave Radiothermometry. Math. Phys. Comput. Simul. 2019;22:52–66. doi: 10.15688/mpcm.jvolsu.2019.3.5.
    1. Cheboksarov D.V., Butrov A.V., Shevelev O.A., Amcheslavsky V.G., Pulina N.N., Buntina M.A., Sokolov I.M. Diagnostic opportunities of noninvasive brain thermomonitoring. Anesteziol. Reanimatol. 2015;60:66.
    1. Vesnin S.G., Sedankin M.K., Ovchinnikov L.M., Gudkov A.G., Leushin V.Y., Sidorov I.A., Goryanin I.I. Portable microwave radiometer for wearable devices. Sens. Actuat. A Phys. 2021;318:112506.

Source: PubMed

3
Tilaa