Evaluation of an RNAseq-Based Immunogenomic Liquid Biopsy Approach in Early-Stage Prostate Cancer

Leander Van Neste, Kirk J Wojno, Ricardo Henao, Shrikant Mane, Howard Korman, Jason Hafron, Kenneth Kernen, Rima Tinawi-Aljundi, Mathew Putzi, Amin I Kassis, Philip W Kantoff, Leander Van Neste, Kirk J Wojno, Ricardo Henao, Shrikant Mane, Howard Korman, Jason Hafron, Kenneth Kernen, Rima Tinawi-Aljundi, Mathew Putzi, Amin I Kassis, Philip W Kantoff

Abstract

The primary objective of this study is to detect biomarkers and develop models that enable the identification of clinically significant prostate cancer and to understand the biologic implications of the genes involved. Peripheral blood samples (1018 patients) were split chronologically into independent training (n = 713) and validation (n = 305) sets. Whole transcriptome RNA sequencing was performed on isolated phagocytic CD14+ and non-phagocytic CD2+ cells and their gene expression levels were used to develop predictive models that correlate to adverse pathologic features. The immune-transcriptomic model with the highest performance for predicting adverse pathology, based on a subtraction of the log-transformed expression signals of the two cell types, displayed an area under the curve (AUC) of the receiver operating characteristic of 0.70. The addition of biomarkers in combination with traditional clinical risk factors (age, serum prostate-specific antigen (PSA), PSA density, race, digital rectal examination (DRE), and family history) enhanced the AUC to 0.91 and 0.83 for the training and validation sets, respectively. The markers identified by this approach uncovered specific pathway associations relevant to (prostate) cancer biology. Increased phagocytic activity in conjunction with cancer-associated (mis-)regulation is also represented by these markers. Differential gene expression of circulating immune cells gives insight into the cellular immune response to early tumor development and immune surveillance.

Keywords: CD14+; CD2+; boosting; cancer; cells; gradient; immune; phagocytosis; transcriptomics.

Conflict of interest statement

Immunis.AI ownership interest: K.J.W., A.I.K., employee: K.J.W., consultant: P.W.K., L.V.N., R.H., A.I.K., research funding: H.K., J.H., K.K., M.P., K.J.W., R.T.-A., S.M., scientific advisory board: P.W.K., inventor on patents: A.I.K., K.J.W.

Figures

Figure 1
Figure 1
ROC curves for genomics only CD2, CD14, and CD14/CD2 ratio models. AUC values and confidence intervals are shown in the white area of Table 2.
Figure 2
Figure 2
ROC curves for CD14/CD2 ratio model compared to those models including age, PSA, and PSAD. AUC values and confidence intervals are shown in Table 2 above.
Figure 3
Figure 3
Top-ranked, enriched pathways and ontologies represented by the 120 genes in the best performing model according to MSigDB hallmark (A), KEGG (B), and gene ontology biological processes (C). Only terms that had a false discovery rate < 0.1 (or <0.01 for gene ontology (C)) are shown.

References

    1. Hou J.-S., He Y.-Y., Du L.-L., Duan Z.-M., Chen X., Li M. Gene expression profile and long noncoding RNA analysis in Candida albicans insoluble β-glucan-stimulated CD14+ monocytes and THP-1 cells. Microb. Pathog. 2021;157:104963. doi: 10.1016/j.micpath.2021.104963.
    1. Reynolds L.L., Ding J., Taylor J.R., Lohman K., Soranzo N., De La Fuente A., Liu T.F., Johnson C., Barr R.G., Register T.C., et al. Transcriptomic profiles of aging in purified human immune cells. BMC Genom. 2015;16:1–17. doi: 10.1186/s12864-015-1522-4.
    1. Ruiz-Limon P., Ortega-Castro R., Barbarroja N., Perez-Sanchez C., Jamin C., Patiño-Trives A.M., Luque-Tevar M., Ibáñez-Costa A., Perez-Sanchez L., de la Rosa I.A., et al. Molecular Characterization of Monocyte Subsets Reveals Specific and Distinctive Molecular Signatures Associated With Cardiovascular Disease in Rheumatoid Arthritis. Front. Immunol. 2019;10:1111. doi: 10.3389/fimmu.2019.01111.
    1. Wang L., Felts S.J., Van Keulen V.P., Scheid A.D., Block M.S., Markovic S.N., Pease L.R., Zhang Y. Integrative Genome-Wide Analysis of Long Noncoding RNAs in Diverse Immune Cell Types of Melanoma Patients. Cancer Res. 2018;78:4411–4423. doi: 10.1158/0008-5472.CAN-18-0529.
    1. Palmer C., Diehn M., Alizadeh A.A., Brown P.O. Cell-type specific gene expression profiles of leukocytes in human peripheral blood. BMC Genom. 2006;7:115. doi: 10.1186/1471-2164-7-115.
    1. Itoh K., Okubo K., Utiyama H., Hirano T., Yoshii J., Matsubara K. Expression profile of active genes in granu-locytes. Blood. 1998;92:1432–1441. doi: 10.1182/blood.V92.4.1432.
    1. Hashimoto S.-I., Nagai S., Sese J., Suzuki T., Obata A., Sato T., Toyoda N., Dong H.-Y., Kurachi M., Nagahata T., et al. Gene expression profile in human leukocytes. Blood. 2003;101:3509–3513. doi: 10.1182/blood-2002-06-1866.
    1. Allantaz F., Cheng D.T., Bergauer T., Ravindran P., Rossier M.F., Ebeling M., Badi L., Reis B., Bitter H., D’Asaro M., et al. Expression Profiling of Human Immune Cell Subsets Identifies miRNA-mRNA Regulatory Relationships Correlated with Cell Type Specific Expression. PLoS ONE. 2012;7:e29979. doi: 10.1371/journal.pone.0029979.
    1. Ross R.W., Galsky M.D., Scher H.I., Magidson J., Wassmann K., Lee G.-S.M., Katz L., Subudhi S.K., Anand A., Fleisher M., et al. A whole-blood RNA transcript-based prognostic model in men with castration-resistant prostate cancer: A prospective study. Lancet Oncol. 2012;13:1105–1113. doi: 10.1016/S1470-2045(12)70263-2.
    1. Olmos D., Brewer D., Clark J., Danila D.C., Parker C., Attard G., Fleisher M., Reid A.H., Castro E., Sandhu S.K., et al. Prognostic value of blood mRNA expression signatures in castration-resistant prostate cancer: A prospective, two-stage study. Lancet Oncol. 2012;13:1114–1124. doi: 10.1016/S1470-2045(12)70372-8.
    1. Wang L., Gong Y., Chippada-Venkata U., Heck M.M., Retz M., Nawroth R., Galsky M., Tsao C.-K., Schadt E., De Bono J., et al. A robust blood gene expression-based prognostic model for castration-resistant prostate cancer. BMC Med. 2015;13:201. doi: 10.1186/s12916-015-0442-0.
    1. Huen N.-Y., Pang A.L.-Y., Tucker J.A., Lee T.-L., Vergati M., Jochems C., Intrivici C., Cereda V., Chan W.-Y., Rennert O.M., et al. Up-regulation of proliferative and migratory genes in regulatory T cells from patients with metastatic castration-resistant prostate cancer. Int. J. Cancer. 2013;133:373–382. doi: 10.1002/ijc.28026.
    1. Wallace T.A., Downey R.F., Seufert C.J., Schetter A., Dorsey T.H., Johnson C.A., Goldman R., Loffredo C.A., Yan P., Sullivan F.J., et al. Elevated HERV-K mRNA expression in PBMC is associated with a prostate cancer diagnosis particularly in older men and smokers. Carcinogenesis. 2014;35:2074–2083. doi: 10.1093/carcin/bgu114.
    1. Showe M.K., Vachani A., Kossenkov A.V., Yousef M., Nichols C., Nikonova E.V., Chang C., Kucharczuk J., Tran B., Wakeam E., et al. Gene Expression Profiles in Peripheral Blood Mononuclear Cells Can Distinguish Patients with Non–Small Cell Lung Cancer from Patients with Nonmalignant Lung Disease. Cancer Res. 2009;69:9202–9210. doi: 10.1158/0008-5472.CAN-09-1378.
    1. Zander T., Hofmann A., Staratschek-Jox A., Classen S., Debey-Pascher S., Maisel D., Ansén S., Hahn M., Beyer M., Thomas R.K., et al. Blood-Based Gene Expression Signatures in Non–Small Cell Lung Cancer. Clin. Cancer Res. 2011;17:3360–3367. doi: 10.1158/1078-0432.CCR-10-0533.
    1. Kossenkov A.V., Dawany N., Evans T.L., Kucharczuk J.C., Albelda S.M., Showe L.C., Showe M.K., Vachani A. Peripheral Immune Cell Gene Expression Predicts Survival of Patients with Non-Small Cell Lung Cancer. PLoS ONE. 2012;7:e34392. doi: 10.1371/journal.pone.0034392.
    1. Ma J., Lin Y., Zhan M., Mann D.L., A Stass S., Jiang F. Differential miRNA expressions in peripheral blood mononuclear cells for diagnosis of lung cancer. Lab. Investig. 2015;95:1197–1206. doi: 10.1038/labinvest.2015.88.
    1. Kossenkov A.V., Qureshi R., Dawany N.B., Wickramasinghe J., Liu Q., Majumdar R.S., Chang C., Widura S., Kumar T., Horng W.-H., et al. A Gene Expression Classifier from Whole Blood Distinguishes Benign from Malignant Lung Nodules Detected by Low-Dose CT. Cancer Res. 2018;79:263–273. doi: 10.1158/0008-5472.CAN-18-2032.
    1. Baine M.J., Menning M., Smith L.M., Mallya K., Kaur S., Rachagani S., Chakraborty S., Sasson A.R., Brand R.E., Batra S.K. Differential gene expression analysis of peripheral blood mononuclear cells reveals novel test for early detection of pancreatic cancer. Cancer Biomarkers. 2012;11:1–14. doi: 10.3233/CBM-2012-0260.
    1. Batliwalla F.M., Baechler E.C., Xiao X., Li W., Balasubramanian S., Khalili H., Damle A., Ortmann W.A., Perrone A., Kantor A.B., et al. Peripheral blood gene expression profiling in rheumatoid arthritis. Genes Immun. 2005;6:388–397. doi: 10.1038/sj.gene.6364209.
    1. Ramilo O., Allman W., Chung W., Mejias A., Ardura M., Glaser C., Wittkowski K.M., Piqueras B., Banchereau J., Palucka A.K., et al. Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood. 2006;109:2066–2077. doi: 10.1182/blood-2006-02-002477.
    1. Dale D.C., Boxer L., Liles W.C. The phagocytes: Neutrophils and monocytes. Blood. 2008;112:935–945. doi: 10.1182/blood-2007-12-077917.
    1. Chow A., Brown B.D., Merad M. Studying the mononuclear phagocyte system in the molecular age. Nat. Rev. Immunol. 2011;11:788–798. doi: 10.1038/nri3087.
    1. Gutknecht M.F., Bouton A.H. Functional significance of mononuclear phagocyte populations generated through adult hematopoiesis. J. Leukoc. Biol. 2014;96:969–980. doi: 10.1189/jlb.1RI0414-195R.
    1. Pritchard C.C., Mateo J., Walsh M.F., De Sarkar N., Abida W., Beltran H., Garofalo A., Gulati R., Carreira S., Eeles R., et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N. Engl. J. Med. 2016;375:443–453. doi: 10.1056/NEJMoa1603144.
    1. Wang G., Zhao D., Spring D.J., Depinho R.A. Genetics and biology of prostate cancer. Genes Dev. 2018;32:1105–1140. doi: 10.1101/gad.315739.118.
    1. Ross-Adams H., Lamb A., Dunning M., Halim S., Lindberg J., Massie C., Egevad L., Russell R., Ramos-Montoya A., Vowler S., et al. Integration of copy number and transcriptomics provides risk stratification in prostate cancer: A discovery and validation cohort study. EBioMedicine. 2015;2:1133–1144. doi: 10.1016/j.ebiom.2015.07.017.
    1. Wang G., Xu D., Zhang Z., Li X., Shi J., Sun J., Liu H.-Z., Li X., Zhou M., Zheng T. The pan-cancer landscape of crosstalk between epithelial-mesenchymal transition and immune evasion relevant to prognosis and immunotherapy response. npj Precis. Oncol. 2021;5:1–10. doi: 10.1038/s41698-021-00200-4.
    1. Efremova M., Rieder D., Klepsch V., Charoentong P., Finotello F., Hackl H., Kleiter N., Löwer M., Baier G., Krogsdam A., et al. Targeting immune checkpoints potentiates immunoediting and changes the dynamics of tumor evolution. Nat. Commun. 2018;9:1–13. doi: 10.1038/s41467-017-02424-0.
    1. Dunn G.P., Bruce A.T., Ikeda H., Old L.J., Schreiber R.D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol. 2002;3:991–998. doi: 10.1038/ni1102-991.
    1. Gasser S., Raulet D.H. The DNA Damage Response Arouses the Immune System. Cancer Res. 2006;66:3959–3962. doi: 10.1158/0008-5472.CAN-05-4603.
    1. Fleuren G.J., Kuppen P.J.K. Immune Surveillance. In: Delves P., Roitt I., editors. Encyclopedia of Immunology. 2nd ed. Academic Press; New York, NY, USA: 1998.
    1. Murphy K., Weaver C. Janeway’s Immunobiology. Garland Science; New York, NY, USA: 2012.
    1. Aderem A., Underhill D. Mechanisms of Phagocytosis in macrophages. Annu. Rev. Immunol. 1999;17:593–623. doi: 10.1146/annurev.immunol.17.1.593.
    1. Foulds G.A., Vadakekolathu J., Abdel-Fatah T.M.A., Nagarajan D., Reeder S., Johnson C., Hood S., Moseley P., Chan S.Y.T., Pockley A., et al. Immune-Phenotyping and Transcriptomic Profiling of Peripheral Blood Mononuclear Cells From Patients With Breast Cancer: Identification of a 3 Gene Signature Which Predicts Relapse of Triple Negative Breast Cancer. Front. Immunol. 2018;9:2028. doi: 10.3389/fimmu.2018.02028.
    1. Shill D.K., Roobol M.J., Ehdaie B., Vickers A.J., Carlsson S.V. Active surveillance for prostate cancer. Transl. Androl. Urol. 2021;10:2809819. doi: 10.21037/tau-20-1370.
    1. Kaul S., Wojno K.J., Stone S., Evans B., Bernhisel R., Meek S., D’Anna R.E., Ferguson J., Glaser J., Morgan T.M., et al. Clinical outcomes in men with prostate cancer who selected active surveillance using a clinical cell cycle risk score. Pers. Med. 2019;16:491–499. doi: 10.2217/pme-2019-0084.
    1. Egevad L., Delahunt B., Srigley J.R., Samaratunga H. International Society of Urological Pathology (ISUP) grading of prostate cancer—An ISUP consensus on contemporary grading. APMIS. 2016;124:433–435. doi: 10.1111/apm.12533.
    1. Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170.
    1. Langmead B., Salzberg S. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923.
    1. Roberts A., Pachter L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat. Methods. 2013;10:71–73. doi: 10.1038/nmeth.2251.
    1. Robinson M.D., Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25. doi: 10.1186/gb-2010-11-3-r25.
    1. Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., Liu T.Y. Lightgbm: A highly efficient gradient boost-ing decision tree. Adv. Neural Inf. Process. Syst. 2017;30:3146–3154.
    1. Fawcett T. An introduction to ROC analysis. Pattern Recognit. Lett. 2005;27:861–874. doi: 10.1016/j.patrec.2005.10.010.
    1. Delong E.R., Delong D.M., Clarke-Pearson D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics. 1988;44:837. doi: 10.2307/2531595.
    1. Chen E.Y., Tan C.M., Kou Y., Duan Q., Wang Z., Meirelles G.V., Clark N.R., Ma’Ayan A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013;14:128. doi: 10.1186/1471-2105-14-128.
    1. Kuleshov M.V., Jones M.R., Rouillard A., Fernandez N.F., Duan Q., Wang Z., Koplev S., Jenkins S., Jagodnik K.M., Lachmann A., et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–W97. doi: 10.1093/nar/gkw377.
    1. Xie Z., Bailey A., Kuleshov M.V., Clarke D.J.B., Evangelista J.E., Jenkins S.L., Lachmann A., Wojciechowicz M.L., Kropiwnicki E., Jagodnik K.M., et al. Gene Set Knowledge Discovery with Enrichr. Curr. Protoc. 2021;1:e90. doi: 10.1002/cpz1.90.

Source: PubMed

3
Tilaa