The vesicular ATPase: a missing link between acidification and exocytosis

Dong Wang, P Robin Hiesinger, Dong Wang, P Robin Hiesinger

Abstract

The vesicular adenosine triphosphatase (ATPase) acidifies intracellular compartments, including synaptic vesicles and secretory granules. A controversy about a second function of this ATPase in exocytosis has been fuelled by questions about multiple putative roles of acidification in the exocytic process. Now, Poëa-Guyon et al. (2013. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201303104) present new evidence that the vesicular ATPase performs separate acidification and exocytosis roles and propose a mechanism for how these two functions are causally linked.

Figures

Figure 1.
Figure 1.
V-ATPase V0–V1 association blocks secretion. (A) Poëa-Guyon et al. (2013) suggest that dissociation of V0 (red boxes) and V1 (green cylinders) sectors follows vesicle acidification (yellow) and frees the V0 sector for an acute, acidification-independent function in secretion.(B) V-ATPase–independent pharmacological disruption of vesicular acidification causes increased V0–V1 assembly of the functional proton pump, which in turn blocks secretion.(C) Pharmacological disruption of the V-ATPase disrupts both vesicle acidification and V0–V1 assembly, thereby permitting V0-dependent secretion. This mechanism can override disruption of acidification shown in B and restores secretion of nonacidified vesicles.

References

    1. Bayer M.J., Reese C., Buhler S., Peters C., Mayer A. 2003. Vacuole membrane fusion: V0 functions after trans-SNARE pairing and is coupled to the Ca2+-releasing channel. J. Cell Biol. 162:211–222 10.1083/jcb.200212004
    1. Cousin M.A., Nicholls D.G. 1997. Synaptic vesicle recycling in cultured cerebellar granule cells: role of vesicular acidification and refilling. J. Neurochem. 69:1927–1935 10.1046/j.1471-4159.1997.69051927.x
    1. Di Giovanni J., Boudkkazi S., Mochida S., Bialowas A., Samari N., Lévêque C., Youssouf F., Brechet A., Iborra C., Maulet Y., et al. 2010. V-ATPase membrane sector associates with synaptobrevin to modulate neurotransmitter release. Neuron. 67:268–279 10.1016/j.neuron.2010.06.024
    1. Ernstrom G.G., Weimer R., Pawar D.R., Watanabe S., Hobson R.J., Greenstein D., Jorgensen E.M. 2012. V-ATPase V1 sector is required for corpse clearance and neurotransmission in Caenorhabditis elegans. Genetics. 191:461–475 10.1534/genetics.112.139667
    1. Forgac M. 2007. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8:917–929 10.1038/nrm2272
    1. Hiesinger P.R., Fayyazuddin A., Mehta S.Q., Rosenmund T., Schulze K.L., Zhai R.G., Verstreken P., Cao Y., Zhou Y., Kunz J., Bellen H.J. 2005. The v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell. 121:607–620 10.1016/j.cell.2005.03.012
    1. Hurtado-Lorenzo A., Skinner M., El Annan J., Futai M., Sun-Wada G.H., Bourgoin S., Casanova J., Wildeman A., Bechoua S., Ausiello D.A., et al. 2006. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat. Cell Biol. 8:124–136 10.1038/ncb1348
    1. Israël M., Morel N., Lesbats B., Birman S., Manaranche R. 1986. Purification of a presynaptic membrane protein that mediates a calcium-dependent translocation of acetylcholine. Proc. Natl. Acad. Sci. USA. 83:9226–9230 10.1073/pnas.83.23.9226
    1. Lee S.H., Rho J., Jeong D., Sul J.Y., Kim T., Kim N., Kang J.S., Miyamoto T., Suda T., Lee S.K., et al. 2006. v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med. 12:1403–1409 10.1038/nm1514
    1. Liégeois S., Benedetto A., Garnier J.M., Schwab Y., Labouesse M. 2006. The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J. Cell Biol. 173:949–961 10.1083/jcb.200511072
    1. Morel N., Dedieu J.C., Philippe J.M. 2003. Specific sorting of the a1 isoform of the V-H+ATPase a subunit to nerve terminals where it associates with both synaptic vesicles and the presynaptic plasma membrane. J. Cell Sci. 116:4751–4762 10.1242/jcs.00791
    1. Peri F., Nüsslein-Volhard C. 2008. Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell. 133:916–927 10.1016/j.cell.2008.04.037
    1. Peters C., Bayer M.J., Bühler S., Andersen J.S., Mann M., Mayer A. 2001. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature. 409:581–588 10.1038/35054500
    1. Poëa-Guyon S., Raafet Ammar M., Erard M., Amar M., Moreau A.W., Fossier P., Gleize V., Vitale N., Morel N. 2013. The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery. J. Cell Biol. 203:283–298
    1. Saw N.M., Kang S.Y., Parsaud L., Han G.A., Jiang T., Grzegorczyk K., Surkont M., Sun-Wada G.H., Wada Y., Li L., Sugita S. 2011. Vacuolar H(+)-ATPase subunits Voa1 and Voa2 cooperatively regulate secretory vesicle acidification, transmitter uptake, and storage. Mol. Biol. Cell. 22:3394–3409 10.1091/mbc.E11-02-0155
    1. Strasser B., Iwaszkiewicz J., Michielin O., Mayer A. 2011. The V-ATPase proteolipid cylinder promotes the lipid-mixing stage of SNARE-dependent fusion of yeast vacuoles. EMBO J. 30:4126–4141 10.1038/emboj.2011.335
    1. Sun-Wada G.H., Toyomura T., Murata Y., Yamamoto A., Futai M., Wada Y. 2006. The a3 isoform of V-ATPase regulates insulin secretion from pancreatic beta-cells. J. Cell Sci. 119:4531–4540 10.1242/jcs.03234
    1. Ungermann C., Wickner W., Xu Z. 1999. Vacuole acidification is required for trans-SNARE pairing, LMA1 release, and homotypic fusion. Proc. Natl. Acad. Sci. USA. 96:11194–11199 10.1073/pnas.96.20.11194
    1. Williamson W.R., Wang D., Haberman A.S., Hiesinger P.R. 2010. A dual function of V0-ATPase a1 provides an endolysosomal degradation mechanism in Drosophila melanogaster photoreceptors. J. Cell Biol. 189:885–899 10.1083/jcb.201003062
    1. Yan Y., Denef N., Schüpbach T. 2009. The vacuolar proton pump, V-ATPase, is required for notch signaling and endosomal trafficking in Drosophila. Dev. Cell. 17:387–402 10.1016/j.devcel.2009.07.001
    1. Zoncu R., Bar-Peled L., Efeyan A., Wang S., Sancak Y., Sabatini D.M. 2011. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science. 334:678–683 10.1126/science.1207056

Source: PubMed

3
Tilaa