Adverse Cardiac Remodelling after Acute Myocardial Infarction: Old and New Biomarkers

Alexander E Berezin, Alexander A Berezin, Alexander E Berezin, Alexander A Berezin

Abstract

The prevalence of heart failure (HF) due to cardiac remodelling after acute myocardial infarction (AMI) does not decrease regardless of implementation of new technologies supporting opening culprit coronary artery and solving of ischemia-relating stenosis with primary percutaneous coronary intervention (PCI). Numerous studies have examined the diagnostic and prognostic potencies of circulating cardiac biomarkers in acute coronary syndrome/AMI and heart failure after AMI, and even fewer have depicted the utility of biomarkers in AMI patients undergoing primary PCI. Although complete revascularization at early period of acute coronary syndrome/AMI is an established factor for improved short-term and long-term prognosis and lowered risk of cardiovascular (CV) complications, late adverse cardiac remodelling may be a major risk factor for one-year mortality and postponded heart failure manifestation after PCI with subsequent blood flow resolving in culprit coronary artery. The aim of the review was to focus an attention on circulating biomarker as a promising tool to stratify AMI patients at high risk of poor cardiac recovery and developing HF after successful PCI. The main consideration affects biomarkers of inflammation, biomechanical myocardial stress, cardiac injury and necrosis, fibrosis, endothelial dysfunction, and vascular reparation. Clinical utilities and predictive modalities of natriuretic peptides, cardiac troponins, galectin 3, soluble suppressor tumorogenicity-2, high-sensitive C-reactive protein, growth differential factor-15, midregional proadrenomedullin, noncoding RNAs, and other biomarkers for adverse cardiac remodelling are discussed in the review.

Conflict of interest statement

The authors declare that there is no conflict of interest regarding the publication of this paper.

Copyright © 2020 Alexander E. Berezin and Alexander A. Berezin.

Figures

Figure 1
Figure 1
Adverse cardiac remodelling after AMI: the role of different triggers in development of cardiac architectonic disorders and heart failure. LV: left ventricular; HF: heart failure; HFpEF: HF with preserved ejection fraction; HFmrEF: HF with midrange ejection fraction; HFrEF: HF with reduced ejection fraction.
Figure 2
Figure 2
The factors preventing late adverse cardiac remodelling in AMI patients after successful reperfusion with PCI. IVUS-VH: intravascular ultrasound virtual-histology; BMS: bare metal stent; BES: biolimus eluting stent; OCT: optical coherence tomography; DAPT: dual antiplatelet therapy; ACE: angiotensin-converting enzyme; ARBs: angiotensin-II receptor antagonists; MCRA: mineralocorticoid receptor antagonists; IC: intracoronary.
Figure 3
Figure 3
The main pathogenetic mechanisms underlying the initiation and progression of late adverse cardiac remodelling in AMI patients after successful reperfusion with PCI. HF: heart failure; ECM: extracellular matrix; PCI: percutaneous coronary intervention.
Figure 4
Figure 4
The role of miRNAs in the pathogenesis of late adverse cardiac remodelling in AMI. VEGF: vascular endothelial growth factor; TGF: transforming growth factor; NO: nitric oxide; eNOs: endothelial NO synthase; MMP: matrix metalloproteinase; VCAM: vascular adhesive molecule.

References

    1. Carter H. E., Schofield D., Shrestha R. Productivity costs of cardiovascular disease mortality across disease types and socioeconomic groups. Open Heart. 2019;6(1, article e000939) doi: 10.1136/openhrt-2018-000939.
    1. Yap J., Chia S. Y., Lim F. Y., et al. The Singapore Heart Failure Risk Score: prediction of survival in Southeast Asian patients. Annals of the Academy of Medicine of Singapore. 2019;48(3):86–94.
    1. Chen X., Savarese G., Dahlström U., Lund L. H., Fu M. Age-dependent differences in clinical phenotype and prognosis in heart failure with mid-range ejection compared with heart failure with reduced or preserved ejection fraction. Clinical Research in Cardiology. 2019;108(12):1394–1405. doi: 10.1007/s00392-019-01477-z. [Epub ahead of print]
    1. Seferović P. M., Polovina M., Bauersachs J., et al. Heart failure in cardiomyopathies: a position paper from the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure. 2019;21(5):553–576. doi: 10.1002/ejhf.1461.
    1. Dharmarajan K., Rich M. W. Epidemiology, pathophysiology, and prognosis of heart failure in older adults. Heart Failure Clinics. 2017;13(3):417–426. doi: 10.1016/j.hfc.2017.02.001.
    1. Slee A., Saad M., Saksena S. Heart failure progression and mortality in atrial fibrillation patients with preserved or reduced left ventricular ejection fraction. Journal of Interventional Cardiac Electrophysiology. 2019;55(3):325–331. doi: 10.1007/s10840-019-00534-x. [Epub ahead of print]
    1. Sato Y., Yoshihisa A., Oikawa M., et al. Prognostic Impact of Worsening Renal Function in Hospitalized Heart Failure Patients With Preserved Ejection Fraction: A Report From the JASPER Registry. Journal of Cardiac Failure. 2019;25(8):631–642. doi: 10.1016/j.cardfail.2019.04.009. [Epub ahead of print]
    1. Nakamura M., Sadoshima J. Cardiomyopathy in obesity, insulin resistance and diabetes. The Journal of Physiology. 2019 doi: 10.1113/JP276747. [Epub ahead of print]
    1. Shen L., Jhund P. S., Docherty K. F., et al. Prior pacemaker implantation and clinical outcomes in patients with heart failure and preserved ejection fraction. JACC: Heart Failure. 2019;7(5):418–427. doi: 10.1016/j.jchf.2018.12.006. [Epub ahead of print]
    1. Seligman H., Shun-Shin M. J., Vasireddy A., et al. Fractional flow reserve derived from microcatheters versus standard pressure wires: a stenosis-level meta-analysis. Open Heart. 2019;6(1, article e000971) doi: 10.1136/openhrt-2018-000971.
    1. Patel K. V., Mauricio R., Grodin J. L., et al. Identifying a low-flow phenotype in heart failure with preserved ejection fraction: a secondary analysis of the RELAX trial. ESC Heart Failure. 2019;6(4):613–620. doi: 10.1002/ehf2.12431.
    1. Halade G. V., Kain V., Tourki B., Jadapalli J. K. Lipoxygenase drives lipidomic and metabolic reprogramming in ischemic heart failure. Metabolism. 2019;96:22–32. doi: 10.1016/j.metabol.2019.04.011. [Epub ahead of print]
    1. Tsai J. P., Sung K. T., Su C. H., et al. Diagnostic accuracy of left atrial remodelling and natriuretic peptide levels for preclinical heart failure. ESC Heart Failure. 2019;6(4):723–732. doi: 10.1002/ehf2.12430. [Epub ahead of print]
    1. Burlacu A., Simion P., Nistor I., Covic A., Tinica G. Novel percutaneous interventional therapies in heart failure with preserved ejection fraction: an integrative review. Heart Failure Reviews. 2019;24(5):793–803. doi: 10.1007/s10741-019-09787-0. [Epub ahead of print]
    1. Zeng H., Chen J. X. Microvascular rarefaction and heart failure with preserved ejection fraction. Frontiers in Cardiovascular Medicine. 2019;6 doi: 10.3389/fcvm.2019.00015.
    1. Scarsini R., de Maria G. L., Borlotti A., et al. Incremental value of coronary microcirculation resistive reserve ratio in predicting the extent of myocardial infarction in patients with STEMI. Insights from the Oxford Acute Myocardial Infarction (OxAMI) study. Cardiovascular Revascularization Medicine. 2019;20(12):1148–1155. doi: 10.1016/j.carrev.2019.01.022. [Epub ahead of print]
    1. Ky B., French B., May Khan A., et al. Ventricular-Arterial Coupling, Remodeling, and Prognosis in Chronic Heart Failure. Journal of the American College of Cardiology. 2013;62(13):1165–1172. doi: 10.1016/j.jacc.2013.03.085.
    1. He B., Gai L., Gai J., et al. Correlation between major adverse cardiac events and coronary plaque characteristics. Experimental & Clinical Cardiology. 2013;18(2):e71–e76.
    1. Bhatt A. S., Ambrosy A. P., Velazquez E. J. Adverse remodeling and reverse remodeling after myocardial infarction. Current Cardiology Reports. 2017;19(8) doi: 10.1007/s11886-017-0876-4.
    1. Blom A. S., Pilla J. J., Gorman R. C., III, et al. Infarct size reduction and attenuation of global left ventricular remodeling with the CorCap cardiac support device following acute myocardial infarction in sheep. Heart Failure Reviews. 2005;10(2):125–139. doi: 10.1007/s10741-005-4640-2.
    1. Schoenenberger A. W., Jamshidi P., Kobza R., et al. Progression of coronary artery disease during long-term follow-up of the Swiss Interventional Study on Silent Ischemia Type II (SWISSI II) Clinical Cardiology. 2010;33(5):289–295. doi: 10.1002/clc.20775.
    1. Erne P., Schoenenberger A. W., Burckhardt D., et al. Effects of percutaneous coronary interventions in silent ischemia after myocardial infarction: the SWISSI II randomized controlled trial. JAMA. 2007;297(18):1985–1991. doi: 10.1001/jama.297.18.1985.
    1. Sgueglia G. A., D'Errico F., Gioffrè G., et al. Angiographic and clinical performance of polymer-free biolimus-eluting stent in patients with ST-segment elevation acute myocardial infarction in a metropolitan public hospital: the BESAMI MUCHO study. Catheterization and Cardiovascular Interventions. 2018;91(5):851–858. doi: 10.1002/ccd.27206.
    1. Jones C. R., Khandhar S. J., Ramratnam M., et al. Identification of intrastent pathology associated with late stent thrombosis using optical coherence tomography. Journal of Interventional Cardiology. 2015;28(5):439–448. doi: 10.1111/joic.12220.
    1. Al Mamary A., Dariol G., Napodano M. Late stent fracture – A potential role of left ventricular dilatation. Journal of the Saudi Heart Association. 2014;26(3):162–165. doi: 10.1016/j.jsha.2014.02.001.
    1. Rao S. V., Zeymer U., Douglas P. S., et al. A randomized, double-blind, placebo-controlled trial to evaluate the safety and effectiveness of intracoronary application of a novel bioabsorbable cardiac matrix for the prevention of ventricular remodeling after large ST- segment elevation myocardial infarction: Rationale and design of the PRESERVATION I trial. American Heart Journal. 2015;170(5):929–937. doi: 10.1016/j.ahj.2015.08.017. Epub 2015 Aug 24.
    1. Rao S. V., Zeymer U., Douglas P. S., et al. Bioabsorbable intracoronary matrix for prevention of ventricular remodeling after myocardial infarction. Journal of the American College of Cardiology. 2016;68(7):715–723. doi: 10.1016/j.jacc.2016.05.053.
    1. Mizoguchi T., Sawada T., Shinke T., et al. Detailed comparison of intra-stent conditions 12 months after implantation of everolimus-eluting stents in patients with ST-segment elevation myocardial infarction or stable angina pectoris. International Journal of Cardiology. 2014;171(2):224–230. doi: 10.1016/j.ijcard.2013.12.021. Epub 2013 Dec 21.
    1. Rezkalla S. H., Stankowski R. V., Hanna J., Kloner R. A. Management of no-reflow phenomenon in the catheterization laboratory. JACC: Cardiovascular Interventions. 2017;10(3):215–223. doi: 10.1016/j.jcin.2016.11.059.
    1. Barrabes J. Comments on the 2015 ESC Guidelines for the Management of Acute Coronary Syndromes in Patients Presenting Without Persistent ST-segment Elevation. Revista Española de Cardiología (English Edition) 2015;68(12):1061–1067. doi: 10.1016/j.rec.2015.11.001.
    1. Steigen T. K., Buller C. E., John Mancini G. B., et al. Myocardial perfusion grade after late infarct artery recanalization is associated with global and regional left ventricular function at one year: analysis from the Total Occlusion Study of Canada-2. Circulation: Cardiovascular Interventions. 2010;3(6):549–555. doi: 10.1161/CIRCINTERVENTIONS.109.918722.
    1. Berezin A. E. Endogenous vascular repair system in cardiovascular disease: the role of endothelial progenitor cells. Australasian Medical Journal. 2019;12(2):42–48. doi: 10.21767/AMJ.2018.3464.
    1. Berezin A. Epigenetics in heart failure phenotypes. BBA Clinical. 2016;6:31–37. doi: 10.1016/j.bbacli.2016.05.005.
    1. Celik A., Kalay N., Korkmaz H., et al. Short-term left ventricular remodeling after revascularization in subacute total and subtotal occlusion with the infarct-related left anterior descending artery. Cardiology Research. 2011;2(5):229–235. doi: 10.4021/cr83w.
    1. Pfusterer M. E., Buser P., Osswald S., Weiss P., Bremerich J., Burkart F. Time dependence of left ventricular recovery after delayed recanalization of an occluded infarct-related coronary artery: findings of a pilot study. Journal of the American College of Cardiology. 1998;32(1):97–102. doi: 10.1016/S0735-1097(98)00188-0.
    1. Reifart N. Challenges in complicated coronary chronic total occlusion recanalisation. Interventional Cardiology Review. 2013;8(2):107–111. doi: 10.15420/icr.2013.8.2.107.
    1. Frangogiannis N. G. Pathophysiology of myocardial infarction. Comprehensive Physiology. 2015;20:1841–1875. doi: 10.1002/cphy.c150006.
    1. Neri M., Riezzo I., Pascale N., Pomara C., Turillazzi E. Ischemia/reperfusion injury following acute myocardial infarction: a critical issue for clinicians and forensic pathologists. Mediators Inflamm. 2017;2017, article 7018393:14. doi: 10.1155/2017/7018393. Epub 2017 Feb 13.
    1. Fuhrman D. Y., Kellum J. A. Remote ischemic preconditioning in the PICU: a simple concept with a complex past. Pediatric Critical Care Medicine. 2016;17(8):e371–e379. doi: 10.1097/PCC.0000000000000836.
    1. Hernandez-Resendiz S., Chinda K., Ong S. B., Cabrera-Fuentes H., Zazueta C., Hausenloy D. The role of redox dysregulation in the inflammatory response to acute myocardial ischaemia-reperfusion injury - adding fuel to the fire. Current Medicinal Chemistry. 2018;25(11):1275–1293. doi: 10.2174/0929867324666170329100619.
    1. Przyklenk K., Whittaker P. Remote ischemic preconditioning: current knowledge, unresolved questions, and future priorities. Journal of Cardiovascular Pharmacology and Therapeutics. 2016;16(3-4):255–259. doi: 10.1177/1074248411409040.
    1. Yellon D. M., Hausenloy D. J. Myocardial reperfusion injury. The New England Journal of Medicine. 2007;357(11):1121–1135. doi: 10.1056/nejmra071667.
    1. Pagliaro P., Moro F., Tullio F., Perrelli M.-G., Penna C. Cardioprotective pathways during reperfusion: focus on redox signaling and other modalities of cell Signaling. Antioxidants & Redox Signaling. 2011;14(5):833–850. doi: 10.1089/ars.2010.3245.
    1. Long B., Li N., Xu X. X., et al. Long noncoding RNA FTX regulates cardiomyocyte apoptosis by targeting miR-29b-1-5p and Bcl2l2. Biochemical and Biophysical Research Communications. 2018;495(1):312–318. doi: 10.1016/j.bbrc.2017.11.030.
    1. Kalogeris T., Bao Y., Korthuis R. J. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biology. 2014;2(1):702–714. doi: 10.1016/j.redox.2014.05.006.
    1. Zhang N., Meng X., Mei L., Hu J., Zhao C., Chen W. The long non-coding RNA SNHG1 attenuates cell apoptosis by regulating miR-195 and BCL2-like protein 2 in human cardiomyocytes. Cellular Physiology and Biochemistry. 2018;50(3):1029–1040. doi: 10.1159/000494514.
    1. He F., Liu H., Guo J., et al. Inhibition of microRNA-124 reduces cardiomyocyte apoptosis following myocardial infarction via targeting STAT3. Cellular Physiology and Biochemistry. 2018;51(1):186–200. doi: 10.1159/000495173.
    1. Sun C., Liu H., Guo J., et al. MicroRNA-98 negatively regulates myocardial infarction-induced apoptosis by down-regulating Fas and caspase-3. Scientific Reports. 2017;7(1):p. 7460. doi: 10.1038/s41598-017-07578-x.
    1. Okamoto T., Akaike T., Sawa T., Miyamoto Y., Van der Vliet A., Maeda H. Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. The Journal of Biological Chemistry. 2001;276(31):29596–29602. doi: 10.1074/jbc.m102417200.
    1. Cheung P.-Y., Sawicki G., Wozniak M., Wang W., Radomski M. W., Schulz R. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation. 2000;101(15):1833–1839. doi: 10.1161/01.CIR.101.15.1833.
    1. Berezin A. E., Samura T. A. Prognostic value of biological markers in myocardial infarction patients. Asian Cardiovascular and Thoracic Annals. 2013;21(2):142–150. doi: 10.1177/0218492312449341.
    1. Fernandez-Patron C., Radomski M. W., Davidge S. T. Vascular matrix metalloproteinase-2 cleaves big endothelin-1 yielding a novel vasoconstrictor. Circulation Research. 1999;85(10):906–911. doi: 10.1161/01.RES.85.10.906.
    1. Edwards D., Handsley M., Pennington C. The ADAM metalloproteinases. Molecular Aspects of Medicine. 2008;29(5):258–289. doi: 10.1016/j.mam.2008.08.001.
    1. Petyunina O. V., Kopytsya M. P., Berezin A. E. Biomarker-based prognostication of adverse cardiac remodeling after STEMI: the role of single nucleotide polymorphism T786C in endothelial NO-synthase gene. Journal of Cardiology and Therapy. 2019;6(1):768–774.
    1. Cardin S., Scott-Boyer M. P., Praktiknjo S., et al. Differences in cell-type-specific responses to angiotensin II explain cardiac remodeling differences in C57BL/6 mouse substrains. Hypertension. 2014;64(5):1040–1046. doi: 10.1161/HYPERTENSIONAHA.114.04067.
    1. Li Y., He X._., Li C., Gong L., Liu M. Identification of candidate genes and microRNAs for acute myocardial infarction by weighted gene coexpression network analysis. BioMed Research International. 2019;2019:11. doi: 10.1155/2019/5742608.5742608
    1. Buja L. M. Myocardial ischemia and reperfusion injury. Cardiovascular Pathology. 2005;14(4):170–175. doi: 10.1016/j.carpath.2005.03.006.
    1. Baines C. P. How and when do myocytes die during ischemia and reperfusion: the late phase. Journal of Cardiovascular Pharmacology and Therapeutics. 2016;16(3-4):239–243. doi: 10.1177/1074248411407769.
    1. Zhao Z. Oxidative stress-elicited myocardial apoptosis during reperfusion. Current Opinion in Pharmacology. 2004;4(2):159–165. doi: 10.1016/j.coph.2003.10.010.
    1. Prasad A., Stone G. W., Holmes D. R., Gersh B. Reperfusion injury, microvascular dysfunction, and cardioprotection: the 'dark side' of reperfusion. Circulation. 2009;120(21):2105–2112. doi: 10.1161/circulationaha.108.814640.
    1. Ferdinandy P., Hausenloy D. J., Heusch G., Baxter G. F., Schulz R. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacological Reviews. 2014;66(4):1142–1174. doi: 10.1124/pr.113.008300.
    1. Vander Heide R. S., Steenbergen C. Cardioprotection and Myocardial Reperfusion. Circulation Research. 2013;113(4):464–477. doi: 10.1161/circresaha.113.300765.
    1. McCafferty K., Forbes S., Thiemermann C., Yaqoob M. M. The challenge of translating ischemic conditioning from animal models to humans: the role of comorbidities. Disease Models & Mechanisms. 2014;7(12):1321–1333. doi: 10.1242/dmm.016741.
    1. Bonaventura A., Montecucco F., Dallegri F., et al. Novel findings in neutrophil biology and their impact on cardiovascular disease. Cardiovascular Research. 2019;115(8):1266–1285. doi: 10.1093/cvr/cvz084. [Epub ahead of print]
    1. Razzaque M. A., Xu X., Han M., Badami A., Akhter S. A. Inhibition of postinfarction ventricular remodeling by high molecular weight polyethylene glycol. Journal of Surgical Research. 2018;232:171–178. doi: 10.1016/j.jss.2018.05.035.
    1. An W., Yu Y., Zhang Y., Zhang Z., Yu Y., Zhao X. Exogenous IL-19 attenuates acute ischaemic injury and improves survival in male mice with myocardial infarction. British Journal of Pharmacology. 2019;176(5):699–710. doi: 10.1111/bph.14549.
    1. Arita M., Ohira T., Sun Y.-P., Elangovan S., Chiang N., Serhan C. N. Resolvin E1 selectively interacts with leukotriene B4Receptor BLT1 and ChemR23 to regulate inflammation. The Journal of Immunology. 2007;178(6):3912–3917. doi: 10.4049/jimmunol.178.6.3912.
    1. Kain V., Ingle K. A., Colas R. A., et al. Resolvin D1 activates the inflammation resolving response at splenic and ventricular site following myocardial infarction leading to improved ventricular function. Journal of Molecular and Cellular Cardiology. 2015;84:24–35. doi: 10.1016/j.yjmcc.2015.04.003.
    1. Grisanti L. A., Thomas T. P., Carter R. L., et al. Pepducin-mediated cardioprotection via β-arrestin-biased β2-adrenergic receptor-specific signaling. Theranostics. 2018;8(17):4664–4678. doi: 10.7150/thno.26619.
    1. Guo Z., Liu N., Chen L., Zhao X., Li M. R. Independent roles of CGRP in cardioprotection and hemodynamic regulation in ischemic postconditioning. European Journal of Pharmacology. 2018;828:18–25. doi: 10.1016/j.ejphar.2018.03.031.
    1. Huang Q., Yang Z., Zhou J. P., Luo Y. HMGB1 induces endothelial progenitor cells apoptosis via RAGE-dependent PERK/eIF2α pathway. Molecular and Cellular Biochemistry. 2017;431(1-2):67–74. doi: 10.1007/s11010-017-2976-2. Epub 2017 Mar 1.
    1. Frankenreiter S., Bednarczyk P., Kniess A., et al. cGMP-elevating compounds and ischemic conditioning provide cardioprotection against ischemia and reperfusion injury via cardiomyocyte-specific BK channels. Circulation. 2017;136(24):2337–2355. doi: 10.1161/CIRCULATIONAHA.117.028723.
    1. Raffa S., Chin X. L. D., Stanzione R., et al. The reduction of NDUFC2 expression is associated with mitochondrial impairment in circulating mononuclear cells of patients with acute coronary syndrome. International Journal of Cardiology. 2019;286:127–133. doi: 10.1016/j.ijcard.2019.02.027.
    1. Wang J., Liu M., Wu Q., et al. Human embryonic stem cell-derived cardiovascular progenitors repair infarcted hearts through modulation of MacrophagesviaActivation of signal transducer and activator of transcription 6. Antioxidants & Redox Signaling. 2019;31(5):369–386. doi: 10.1089/ars.2018.7688. [Epub ahead of print]
    1. Zhong Z., Hou J., Zhang Q., et al. Differential expression of circulating long non-coding RNAs in patients with acute myocardial infarction. Medicine. 2018;97(51, article e13066) doi: 10.1097/MD.0000000000013066.
    1. Ibrahim Z. A., Armour C. L., Phipps S., Sukkar M. B. RAGE and TLRs: relatives, friends or neighbours? Molecular Immunology. 2013;56(4):739–744. doi: 10.1016/j.molimm.2013.07.008.
    1. De Haan J. J., Smeets M. B., Pasterkamp G., Arslan F. Danger signals in the initiation of the inflammatory response after myocardial infarction. Mediators of Inflammation. 2013;2013:13. doi: 10.1155/2013/206039.206039
    1. Micera A., Balzamino B. O., Zazzo A. D., Biamonte F., Sica G., Bonini S. Toll-like receptors and tissue remodeling: the pro/cons recent findings. Journal of Cellular Physiology. 2016;231(3):531–544. doi: 10.1002/jcp.25124.
    1. Fujiu K., Wang J., Nagai R. Cardioprotective function of cardiac macrophages. Cardiovascular Research. 2014;102(2):232–239. doi: 10.1093/cvr/cvu059.
    1. Tourki B., Halade G. Leukocyte diversity in resolving and nonresolving mechanisms of cardiac remodeling. The FASEB Journal. 2017;31(10):4226–4239. doi: 10.1096/fj.201700109R.
    1. Dewald O., Zymek P., Winkelmann K., et al. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res. 2005;96(8):881–889. doi: 10.1161/01.RES.0000163017.13772.3a.
    1. Henson P. M., Bratton D. L., Fadok V. A. Apoptotic cell removal. Current Biology. 2001;11(19):R795–R805. doi: 10.1016/S0960-9822(01)00474-2.
    1. Iravanian S., Dudley S. C., Jr. The renin-angiotensin-aldosterone system (RAAS) and cardiac arrhythmias. Heart Rhythm. 2008;5(6):S12–S17. doi: 10.1016/j.hrthm.2008.02.025.
    1. Massa M., Rosti V., Ferrario M., et al. Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood. 2005;105(1):199–206. doi: 10.1182/blood-2004-05-1831.
    1. Gao C., Howard-Quijano K., Rau C., et al. Inflammatory and apoptotic remodeling in autonomic nervous system following myocardial infarction. PLoS One. 2017;12(5, article e0177750) doi: 10.1371/journal.pone.0177750.
    1. Ponikowski P., Voors A. A., Anker S. D., et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European Journal of Heart Failure. 2016;18(8):891–975. doi: 10.1002/ejhf.592.
    1. Yancy C. W., Jessup M., Bozkurt B., et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA Guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136(6):e137–e161. doi: 10.1161/CIR.0000000000000509.
    1. Bozkurt B. What is new in heart failure management in 2017? Update on ACC/AHA Heart Failure Guidelines. Current Cardiology Reports. 2018;20(6) doi: 10.1007/s11886-018-0978-7.
    1. Berezin A. E. Circulating biomarkers in heart failure. Advances in Experimental Medicine and Biology. 2018;1067:89–108. doi: 10.1007/5584_2017_140.
    1. Berezin A. E. Prognostication in different heart failure phenotypes: the role of circulating biomarkers. Journal of Circulating Biomarkers. 2016;5(6):p. 6. doi: 10.5772/62797.
    1. Cheng M., An S., Li J. Identifying key genes associated with acute myocardial infarction. Medicine. 2017;96(42, article e7741) doi: 10.1097/MD.0000000000007741.
    1. Cao Y., Li R., Li Y., et al. Identification of transcription factor-gene regulatory network in acute myocardial infarction. Heart, Lung and Circulation. 2017;26(4):343–353. doi: 10.1016/j.hlc.2016.06.1209. Epub 2016 Jul 26.
    1. Ibanez B., James S., Agewall S., et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC) European Heart Journal. 2018;39(2):119–177. doi: 10.1093/eurheartj/ehx393.
    1. Lyngbakken M. N., Røsjø H., Holmen O. L., Dalen H., Hveem K., Omland T. Temporal changes in cardiac troponin I are associated with risk of cardiovascular events in the general population: the Nord-Trøndelag Health Study. Clinical Chemistry. 2019;65(7):871–881. doi: 10.1373/clinchem.2018.301069. [Epub ahead of print]
    1. Soetkamp D., Raedschelders K., Mastali M., Sobhani K., Bairey Merz C. N., Van Eyk J. The continuing evolution of cardiac troponin I biomarker analysis: from protein to proteoform. Expert Review of Proteomics. 2017;14(11):973–986. doi: 10.1080/14789450.2017.1387054.
    1. Shah A. S., Anand A., Sandoval Y., et al. High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome: a cohort study. Lancet. 2015;386(10012):2481–2488. doi: 10.1016/S0140-6736(15)00391-8.
    1. Stelzle D., Shah A. S. V., Anand A., et al. High-sensitivity cardiac troponin I and risk of heart failure in patients with suspected acute coronary syndrome: a cohort study. European Heart Journal - Quality of Care and Clinical Outcomes. 2018;4(1):36–42. doi: 10.1093/ehjqcco/qcx022.
    1. Berezin A. E. Circulating biomarkers in heart failure: diagnostic and prognostic importance. Journal of Laboratory and Precision Medicine. 2018;3, article 36 doi: 10.21037/jlpm.2018.03.13.
    1. Jia X., Sun W., Hoogeveen R. C., et al. High-Sensitivity Troponin I and Incident Coronary Events, Stroke, Heart Failure Hospitalization, and Mortality in the ARIC Study. Circulation. 2019;139(23):2642–2653. doi: 10.1161/CIRCULATIONAHA.118.038772.
    1. Welsh P., Preiss D., Hayward C., et al. Cardiac troponin T and troponin I in the general Population. Circulation. 2019;139(24):2754–2764. doi: 10.1161/CIRCULATIONAHA.118.038529. [Epub ahead of print]
    1. Raskovalova T., Twerenbold R., Collinson P. O., et al. Diagnostic accuracy of combined cardiac troponin and copeptin assessment for early rule-out of myocardial infarction: a systematic review and meta-analysis. European Heart Journal: Acute Cardiovascular Care. 2014;3(1):18–27. doi: 10.1177/2048872613514015.
    1. Searle J., Danne O., Müller C., Mockel M. Biomarkers in acute coronary syndrome and percutaneous coronary intervention. Minerva Cardioangiologica. 2011;59(3):203–223.
    1. Mueller C. Biomarkers and acute coronary syndromes: an update. European Heart Journal. 2014;35(9):552–556. doi: 10.1093/eurheartj/eht530. Epub 2013 Dec 18.
    1. Möckel M., Searle J. Copeptin-marker of acute myocardial infarction. Current Atherosclerosis Reports. 2014;16(7):p. 421. doi: 10.1007/s11883-014-0421-5.
    1. Karakas M., Januzzi J. L., Jr., Meyer J., et al. Copeptin does not add diagnostic information to high-sensitivity troponin T in low- to intermediate-risk patients with acute chest pain: results from the rule out myocardial infarction by computed tomography (ROMICAT) study. Clinical Chemistry. 2011;57(8):1137–1145. doi: 10.1373/clinchem.2010.160192.
    1. Suzuki S., Motoki H., Minamisawa M., et al. Prognostic significance of high-sensitivity cardiac troponin in patients with heart failure with preserved ejection fraction. Heart Vessels. 2019;34(10):1650–1656. doi: 10.1007/s00380-019-01393-2. [Epub ahead of print]
    1. de Boer R. A., Nayor M., deFilippi C. R., et al. Association of cardiovascular biomarkers with incident heart failure with preserved and reduced ejection fraction. JAMA Cardiology. 2018;3(3):215–224. doi: 10.1001/jamacardio.2017.4987.
    1. Gohar A., Chong J. P. C., Liew O. W., et al. The prognostic value of highly sensitive cardiac troponin assays for adverse events in men and women with stable heart failure and a preserved vs. reduced ejection fraction. European Journal of Heart Failure. 2017;19(12):1638–1647. doi: 10.1002/ejhf.911. Epub 2017 Aug 28.
    1. Santhanakrishnan R., Chong J. P. C., Ng T. P., et al. Growth differentiation factor 15, ST2, high-sensitivity troponin T, and N-terminal pro brain natriuretic peptide in heart failure with preserved vs. reduced ejection fraction. European Journal of Heart Failure. 2012;14(12):1338–1347. doi: 10.1093/eurjhf/hfs130.
    1. Moliner P., Lupón J., Barallat J., et al. Bio-profiling and bio-prognostication of chronic heart failure with mid-range ejection fraction. International Journal of Cardiology. 2018;257:188–192. doi: 10.1016/j.ijcard.2018.01.119.
    1. Welsh P., Kou L., Yu C., et al. Prognostic importance of emerging cardiac, inflammatory, and renal biomarkers in chronic heart failure patients with reduced ejection fraction and anaemia: RED-HF study. European Journal of Heart Failure. 2018;20(2):268–277. doi: 10.1002/ejhf.988.
    1. Sanders-van Wijk S., van Empel V., Davarzani N., et al. Circulating biomarkers of distinct pathophysiological pathways in heart failure with preserved vs. reduced left ventricular ejection fraction. European Journal of Heart Failure. 2015;17(10):1006–1014. doi: 10.1002/ejhf.414.
    1. Seliger S. L., de Lemos J., Neeland I. J., et al. Older Adults, “Malignant” Left Ventricular Hypertrophy, and Associated Cardiac-Specific Biomarker Phenotypes to Identify the Differential Risk of New-Onset Reduced Versus Preserved Ejection Fraction Heart Failure: CHS (Cardiovascular Health Study) JACC: Heart Failure. 2015;3(6):445–455. doi: 10.1016/j.jchf.2014.12.018. Epub 2015 May 14.
    1. Sinning C., Kempf T., Schwarzl M., et al. Biomarkers for characterization of heart failure – Distinction of heart failure with preserved and reduced ejection fraction. International Journal of Cardiology. 2017;227:272–277. doi: 10.1016/j.ijcard.2016.11.110.
    1. Pascual-Figal D. A., Manzano-Fernández S., Boronat M., et al. Soluble ST2, high-sensitivity troponin T- and N-terminal pro-B-type natriuretic peptide: complementary role for risk stratification in acutely decompensated heart failure. European Journal of Heart Failure. 2011;13(7):718–725. doi: 10.1093/eurjhf/hfr047.
    1. Pascual-Figal D. A., Bayes-Genis A., Asensio-Lopez M. C., et al. The interleukin-1 axis and risk of death in patients with acutely decompensated heart failure. Journal of the American College of Cardiology. 2019;73(9):1016–1025. doi: 10.1016/j.jacc.2018.11.054.
    1. Cao Y., Li R., Zhang F., Guo Z., Tuo S., Li Y. Correlation between angiopoietin-like proteins in inflammatory mediators in peripheral blood and severity of coronary arterial lesion in patients with acute myocardial infarction. Experimental and Therapeutic Medicine. 2019;17(5):3495–3500. doi: 10.3892/etm.2019.7386.
    1. Weinberg E. O., Shimpo M., Hurwitz S., Tominaga S., Rouleau J. L., Lee R. T. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation. 2003;107(5):721–726. doi: 10.1161/01.CIR.0000047274.66749.FE.
    1. Januzzi J. L., Peacock W. F., Maisel A. S., et al. Measurement of the Interleukin Family Member ST2 in Patients With Acute Dyspnea: Results From the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) Study. Journal of the American College of Cardiology. 2007;50(7):607–613. doi: 10.1016/j.jacc.2007.05.014.
    1. Seki K., Sanada S., Kudinova A. Y., et al. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circulation: Heart Failure. 2009;2(6):684–691. doi: 10.1161/CIRCHEARTFAILURE.109.873240.
    1. Jenkins W. S., Roger V. L., Jaffe A. S., et al. Prognostic value of soluble ST2 after myocardial infarction: a community perspective. The American Journal of Medicine. 2017;130(9):1112.e9–1112.e15. doi: 10.1016/j.amjmed.2017.02.034. Epub 2017 Mar 23.
    1. Weir R. A. P., Miller A. M., Murphy G. E. J., et al. Serum soluble ST2: a potential novel mediator in left ventricular and infarct remodeling after acute myocardial infarction. Journal of the American College of Cardiology. 2010;55(3):243–250. doi: 10.1016/j.jacc.2009.08.047.
    1. Tang W. H. W., Wu Y., Grodin J. L., et al. Prognostic value of baseline and changes in circulating soluble ST2 levels and the effects of nesiritide in acute decompensated heart failure. JACC: Heart Failure. 2016;4(1):68–77. doi: 10.1016/j.jchf.2015.07.015.
    1. Manzano-Fernández S., Januzzi J. L., Pastor-Pérez F. J., et al. Serial monitoring of soluble interleukin family member ST2 in patients with acutely decompensated heart failure. Cardiology. 2012;122(3):158–166. doi: 10.1159/000338800.
    1. Mueller T., Gegenhuber A., Poelz W., Haltmayer M. Diagnostic accuracy of B type natriuretic peptide and amino terminal proBNP in the emergency diagnosis of heart failure. Heart. 2005;91(5):606–612. doi: 10.1136/hrt.2004.037762.
    1. Berezin A. E. Biomarkers for cardiovascular risk in patients with diabetes. Heart. 2016;102(24):1939–1941. doi: 10.1136/heartjnl-2016-310197.
    1. Kim M. S., Jeong T. D., Han S. B., Min W. K., Kim J. J. Role of soluble ST2 as a prognostic marker in patients with acute heart failure and renal insufficiency. Journal of Korean Medical Science. 2015;30(5):569–575. doi: 10.3346/jkms.2015.30.5.569.
    1. Pascual-Figal D. A., Ordoñez-Llanos J., Tornel P. L., et al. Soluble ST2 for predicting sudden cardiac death in patients with chronic heart failure and left ventricular systolic dysfunction. Journal of the American College of Cardiology. 2009;54(23):2174–2179. doi: 10.1016/j.jacc.2009.07.041.
    1. Emdin M., Aimo A., Vergaro G., et al. sST2 Predicts Outcome in Chronic Heart Failure Beyond NT−proBNP and High- Sensitivity Troponin T. Journal of the American College of Cardiology. 2018;72(19):2309–2320. doi: 10.1016/j.jacc.2018.08.2165.
    1. O’Meara E., Prescott M. F., Claggett B., et al. Independent prognostic value of serum soluble ST2 measurements in patients with heart failure and a reduced ejection fraction in the PARADIGM-HF trial (Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure) Circulation: Heart Failure. 2018;11(5, article e004446) doi: 10.1161/CIRCHEARTFAILURE.117.004446.
    1. Lassus J., Gayat E., Mueller C., et al. Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: the Multinational Observational Cohort on Acute Heart Failure (MOCA) study. International Journal of Cardiology. 2013;168(3):2186–2194. doi: 10.1016/j.ijcard.2013.01.228.
    1. Huang W. P., Zheng X., He L., Su X., Liu C. W., Wu M. X. Role of soluble ST2 levels and beta-blockers dosage on cardiovascular events of patients with unselected ST-segment elevation myocardial infarction. Chinese Medical Journal. 2018;131(11):1282–1288. doi: 10.4103/0366-6999.232819.
    1. Michowitz Y., Arbel Y., Wexler D., et al. Predictive value of high sensitivity CRP in patients with diastolic heart failure. International Journal of Cardiology. 2008;125(3):347–351. doi: 10.1016/j.ijcard.2007.02.037.
    1. Araújo J. P., Lourenço P., Azevedo A., et al. Prognostic value of high-sensitivity C-reactive protein in heart failure: a systematic review. Journal of Cardiac Failure. 2009;15(3):256–266. doi: 10.1016/j.cardfail.2008.10.030.
    1. Kalogeropoulos A. P., Tang W. H. W., Hsu A., et al. High-sensitivity C-reactive protein in acute heart failure: insights from the ASCEND-HF trial. Journal of Cardiac Failure. 2014;20(5):319–326. doi: 10.1016/j.cardfail.2014.02.002.
    1. Huynh K., Van Tassell B., Chow S. L. Predicting therapeutic response in patients with heart failure: the story of C-reactive protein. Expert Review of Cardiovascular Therapy. 2015;13(2):153–161. doi: 10.1586/14779072.2015.1000307. Epub 2015 Jan 12.
    1. Wollert K. C., Kempf T., Wallentin L. Growth differentiation factor 15 as a biomarker in cardiovascular disease. Clinical Chemistry. 2017;63(1):140–151. doi: 10.1373/clinchem.2016.255174.
    1. Kempf T., Eden M., Strelau J., et al. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circulation Research. 2006;98(3):351–360. doi: 10.1161/01.RES.0000202805.73038.48.
    1. Rohatgi A., Patel P., Das S. R., et al. Association of growth differentiation factor-15 with coronary atherosclerosis and mortality in a young, multiethnic population: observations from the Dallas Heart Study. Clinical Chemistry. 2012;58(1):172–182. doi: 10.1373/clinchem.2011.171926.
    1. Bettencourt P., Ferreira-Coimbra J., Rodrigues P., et al. Towards a multi-marker prognostic strategy in acute heart failure: a role for GDF-15. ESC Heart Failure. 2018;5(6):1017–1022. doi: 10.1002/ehf2.12301.
    1. Kempf T., von Haehling S., Peter T., et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. Journal of the American College of Cardiology. 2007;50(11):1054–1060. doi: 10.1016/j.jacc.2007.04.091.
    1. Chan M. M. Y., Santhanakrishnan R., Chong J. P. C., et al. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. European Journal of Heart Failure. 2016;18(1):81–88. doi: 10.1002/ejhf.431.
    1. Anand I. S., Kempf T., Rector T. S., et al. Serial measurement of growth-differentiation factor-15 in heart failure: relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation. 2010;122(14):1387–1395. doi: 10.1161/CIRCULATIONAHA.109.928846.
    1. Lok D. J., Klip I. J. T., Lok S. I., et al. Incremental Prognostic Power of Novel Biomarkers (Growth-Differentiation Factor-15, High-Sensitivity C-Reactive Protein, Galectin-3, and High- Sensitivity Troponin-T) in Patients With Advanced Chronic Heart Failure. The American Journal of Cardiology. 2013;112(6):831–837. doi: 10.1016/j.amjcard.2013.05.013.
    1. Demissei B. G., Cotter G., Prescott M. F., et al. A multimarker multi-time point-based risk stratification strategy in acute heart failure: results from the RELAX-AHF trial. European Journal of Heart Failure. 2017;19(8):1001–1010. doi: 10.1002/ejhf.749.
    1. Li J., Cui Y., Huang A., et al. Additional diagnostic value of growth differentiation factor-15 (GDF-15) to N-terminal B-type natriuretic peptide (NT-proBNP) in patients with different stages of heart failure. Medical Science Monitor. 2018;24:4992–4999. doi: 10.12659/MSM.910671.
    1. Daniels L. B., Bui Q. M. Should a high Gal-3 have us scared stiff? Journal of the American College of Cardiology. 2019;73(18):2296–2298. doi: 10.1016/j.jacc.2019.02.047.
    1. Dumic J., Dabelic S., Flogel M. Galectin-3: an open-ended story. Biochim Biophys Acta. 2006;1760(4):616–635. doi: 10.1016/j.bbagen.2005.12.020.
    1. Sano H., Hsu D. K., Apgar J. R., et al. Critical role of galectin-3 in phagocytosis by macrophages. Journal of Clinical Investigation. 2003;112(3):389–397. doi: 10.1172/JCI200317592.
    1. Krzeslak A., Lipinska A. Galectin-3 as a multifunctional protein. Cellular & Molecular Biology Letters. 2004;9(2):305–328.
    1. Sharma U. C., Pokharel S., van Brakel T. J., et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110(19):3121–3128. doi: 10.1161/01.CIR.0000147181.65298.4D.
    1. Calvier L., Miana M., Reboul P., et al. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33(1):67–75. doi: 10.1161/ATVBAHA.112.300569.
    1. Yu L., Ruifrok W. P. T., Meissner M., et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circulation: Heart Failure. 2013;6(1):107–117. doi: 10.1161/CIRCHEARTFAILURE.112.971168.
    1. de Boer R. A., Voors A. A., Muntendam P., van Gilst W. H., van Veldhuisen D. J. Galectin-3: a novel mediator of heart failure development and progression. European Journal of Heart Failure. 2009;11(9):811–817. doi: 10.1093/eurjhf/hfp097.
    1. Karatolios K., Chatzis G., Holzendorf V., et al. Galectin-3 as a Predictor of Left Ventricular Reverse Remodeling in Recent- Onset Dilated Cardiomyopathy. Disease Markers. 2018;2018:7. doi: 10.1155/2018/2958219.2958219
    1. de Boer R. A., Yu L., van Veldhuisen D. J. Galectin-3 in cardiac remodeling and heart failure. Current Heart Failure Reports. 2010;7(1):1–8. doi: 10.1007/s11897-010-0004-x.
    1. de Boer R. A., Lok D. J. A., Jaarsma T., et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Annals of Medicine. 2010;43(1):60–68. doi: 10.3109/07853890.2010.538080.
    1. Lok D. J., Lok S. I., Bruggink-André de la Porte P. W., et al. Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clinical Research in Cardiology. 2013;102(2):103–110. doi: 10.1007/s00392-012-0500-y.
    1. van Vark L. C., Lesman-Leegte I., Baart S. J., et al. Prognostic value of serial galectin-3 measurements in patients with acute heart failure. Journal of the American Heart Association. 2017;6(12, article e003700) doi: 10.1161/JAHA.116.003700.
    1. Bayes-Genis A., de Antonio M., Vila J., et al. Head-to-head comparison of 2 myocardial fibrosis biomarkers for long-term heart failure risk stratification: ST2 versus galectin-3. Journal of the American College of Cardiology. 2014;63(2):158–166. doi: 10.1016/j.jacc.2013.07.087. Epub 2013 Sep 24.
    1. Chen A., Hou W., Zhang Y., Chen Y., He B. Prognostic value of serum galectin-3 in patients with heart failure: A meta- analysis. International Journal of Cardiology. 2015;182:168–170. doi: 10.1016/j.ijcard.2014.12.137.
    1. Meluzin J., Tomandl J., Podrouzkova H., et al. Can markers of collagen turnover or other biomarkers contribute to the diagnostics of heart failure with normal left ventricular ejection fraction? Biomedical Papers. 2013;157(4):331–339. doi: 10.5507/bp.2012.110. Epub 2013 Feb 14.
    1. Martos R., Baugh J., Ledwidge M., et al. Diagnosis of heart failure with preserved ejection fraction: improved accuracy with the use of markers of collagen turnover. European Journal of Heart Failure. 2009;11(2):191–197. doi: 10.1093/eurjhf/hfn036.
    1. Rutten F. H., Cramer M. J., Paulus W. J. Heart failure with preserved ejection fraction: diastolic heart failure. Nederlands Tijdschrift voor Geneeskunde. 2012;156(45):p. A5315.
    1. de Denus S., Lavoie J., Ducharme A., et al. Differences in biomarkers in patients with heart failure with a reduced vs a preserved left ventricular ejection fraction. Canadian Journal of Cardiology. 2012;28(1):62–68. doi: 10.1016/j.cjca.2011.09.007.
    1. Maharaj N., Khandheria B. K., Libhaber E., et al. Relationship between left ventricular twist and circulating biomarkers of collagen turnover in hypertensive patients with heart failure. Journal of the American Society of Echocardiography. 2014;27(10):1064–1071. doi: 10.1016/j.echo.2014.05.005.
    1. Zelniker T. A., Jarolim P., Scirica B. M., et al. Biomarker of collagen turnover (C-terminal telopeptide) and prognosis in patients with non-ST-elevation acute coronary syndromes. Journal of the American Heart Association. 2019;8(9, article e011444) doi: 10.1161/JAHA.118.011444.
    1. Nagao K., Inada T., Tamura A., et al. Circulating markers of collagen types I, III, and IV in patients with dilated cardiomyopathy: relationships with myocardial collagen expression. ESC Heart Failure. 2018;5(6):1044–1051. doi: 10.1002/ehf2.12360.
    1. Dupuy A. M., Kuster N., Curinier C., et al. Exploring collagen remodeling and regulation as prognosis biomarkers in stable heart failure. Clinica Chimica Acta. 2019;490:167–171. doi: 10.1016/j.cca.2018.08.042.
    1. Volpe M., Carnovali M., Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clinical Science. 2016;130(2):57–77. doi: 10.1042/CS20150469.
    1. Volpe M., Rubattu S., Burnett J. Natriuretic peptides in cardiovascular diseases: current use and perspectives. European Heart Journal. 2014;35(7):419–425. doi: 10.1093/eurheartj/eht466.
    1. Kerkelä R., Ulvila J., Magga J. Natriuretic peptides in the regulation of cardiovascular physiology and metabolic events. Journal of the American Heart Association. 2015;4(10, article e002423) doi: 10.1161/jaha.115.002423.
    1. Calvieri C., Rubattu S., Volpe M. Molecular mechanisms underlying cardiac antihypertrophic and antifibrotic effects of natriuretic peptides. Journal of Molecular Medicine. 2012;90(1):5–13. doi: 10.1007/s00109-011-0801-z.
    1. Gupta D. K., Wang T. J. Natriuretic peptides and cardiometabolic health. Circulation Journal. 2015;79(8):1647–1655. doi: 10.1253/circj.CJ-15-0589.
    1. Potter L. R. Natriuretic peptide metabolism, clearance and degradation. FEBS Journal. 2011;278(11):1808–1817. doi: 10.1111/j.1742-4658.2011.08082.x.
    1. D’Alessandro R., Masarone D., Buono A., et al. Natriuretic peptides: molecular biology, pathophysiology and clinical implications for the cardiologist. Future Cardiology. 2013;9(4):519–534. doi: 10.2217/fca.13.32.
    1. Cao Z., Jia Y., Zhu B. BNP and NT-proBNP as diagnostic biomarkers for cardiac dysfunction in both clinical and forensic medicine. International Journal of Molecular Sciences. 2019;20(8):p. 1820. doi: 10.3390/ijms20081820.
    1. Alpert M. A., Lavie C. J., Agrawal H., Aggarwal K. B., Kumar S. A. Obesity and heart failure: epidemiology, pathophysiology, clinical manifestations, and management. Translational Research. 2014;164(4):345–356. doi: 10.1016/j.trsl.2014.04.010.
    1. Nah E. H., Kim S. Y., Cho S., Kim S., Cho H. I. Plasma NT-proBNP levels associated with cardiac structural abnormalities in asymptomatic health examinees with preserved ejection fraction: a retrospective cross-sectional study. BMJ Open. 2019;9(4, article e026030) doi: 10.1136/bmjopen-2018-026030.
    1. Faxén U. L., Lund L. H., Orsini N., et al. N-terminal pro-B-type natriuretic peptide in chronic heart failure: the impact of sex across the ejection fraction spectrum. International Journal of Cardiology. 2019;287:66–72. doi: 10.1016/j.ijcard.2019.04.023. Epub 2019 Apr 11.
    1. Gaborit F. S., Kistorp C., Kümler T., et al. Prevalence of early stages of heart failure in an elderly risk population: the Copenhagen Heart Failure Risk Study. Open Heart. 2019;6(1, article e000840) doi: 10.1136/openhrt-2018-000840.
    1. Han Z. J., Wu X. D., Cheng J. J., et al. Diagnostic accuracy of natriuretic peptides for heart failure in patients with pleural effusion: a systematic review and updated meta-analysis. PLoS One. 2015;10(8, article e0134376) doi: 10.1371/journal.pone.0134376.
    1. Rocca H.-P. B.-L., Wijk S. S.-v. Natriuretic peptides in chronic heart failure. Cardiac Failure Review. 2019;5(1):44–49. doi: 10.15420/cfr.2018.26.1.
    1. Myhre P. L., Vaduganathan M., Claggett B., et al. B-type natriuretic peptide during treatment with sacubitril/valsartan: the PARADIGM-HF Trial. Journal of the American College of Cardiology. 2019;73(11):1264–1272. doi: 10.1016/j.jacc.2019.01.018.
    1. Stienen S., Salah K., Moons A. H., et al. NT-proBNP (N-terminal pro-B-type natriuretic peptide)-guided therapy in acute decompensated heart failure: PRIMA II randomized controlled trial (can NT-proBNP-guided therapy during hospital admission for acute decompensated heart failure reduce mortality and readmissions?) Circulation. 2018;137(16):1671–1683. doi: 10.1161/CIRCULATIONAHA.117.029882. Epub 2017 Dec 14.
    1. Felker G. M., Anstrom K. J., Adams K. F., et al. Effect of natriuretic peptide-guided therapy on hospitalization or cardiovascular mortality in high-risk patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA. 2017;318(8):713–720. doi: 10.1001/jama.2017.10565.
    1. Morgenthaler N. G., Struck J., Alonso C., Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clinical Chemistry. 2006;52(1):112–119. doi: 10.1373/clinchem.2005.060038.
    1. Dobša L., Edozien K. C. Copeptin and its potential role in diagnosis and prognosis of various diseases. Biochemia Medica. 2013;23(2):172–192. doi: 10.11613/bm.2013.021.
    1. Bolignano D., Cabassi A., Fiaccadori E., et al. Copeptin (CTproAVP), a new tool for understanding the role of vasopressin in pathophysiology. Clinical Chemistry and Laboratory Medicine (CCLM) 2014;52(10):1447–1456. doi: 10.1515/cclm-2014-0379.
    1. Morgenthaler N. G. Copeptin: a biomarker of cardiovascular and renal function. Congestive Heart Failure. 2010;16(Suppl 1):S37–S44. doi: 10.1111/j.1751-7133.2010.00177.x.
    1. Tu W. J., Ma G. Z., Ni Y., et al. Copeptin and NT-proBNP for prediction of all-cause and cardiovascular death in ischemic stroke. Neurology. 2017;88(20):1899–1905. doi: 10.1212/WNL.0000000000003937.
    1. Fenske W., Wanner C., Allolio B., et al. Copeptin levels associate with cardiovascular events in patients with ESRD and type 2 diabetes mellitus. Journal of the American Society of Nephrology. 2011;22(4):782–790. doi: 10.1681/ASN.2010070691.
    1. Tasevska I., Enhorning S., Persson M., Nilsson P. M., Melander O. Copeptin predicts coronary artery disease cardiovascular and total mortality. Heart. 2016;102(2):127–132. doi: 10.1136/heartjnl-2015-308183.
    1. Bhandari S. S., Loke I., Davies J. E., Squire I. B., Struck J., Ng L. L. Gender and renal function influence plasma levels of copeptin in healthy individuals. Clinical Science. 2009;116(3):257–263. doi: 10.1042/CS20080140.
    1. Velho G., Ragot S., el Boustany R., et al. Plasma copeptin, kidney disease, and risk for cardiovascular morbidity and mortality in two cohorts of type 2 diabetes. Cardiovascular Diabetology. 2018;17(1):p. 110. doi: 10.1186/s12933-018-0753-5.
    1. Berezin A. E. Up-to-date clinical approaches of biomarkers’ use in heart failure. Biomedical Research and Therapy. 2017;4(6):1344–1370. doi: 10.15419/bmrat.v4i06.178.
    1. Kitamura K., Kangawa K., Eto T. Adrenomedullin and PAMP: discovery, structures, and cardiovascular functions. Microscopy Research and Technique. 2002;57(1):3–13. doi: 10.1002/jemt.10052.
    1. Nishikimi T., Nakagawa Y. Adrenomedullin as a biomarker of heart failure. Heart Failure Clinics. 2018;14(1):49–55. doi: 10.1016/j.hfc.2017.08.006. Epub 2017 Oct 7.
    1. Kobayashi K., Kitamura K., Hirayama N., et al. Increased plasma adrenomedullin in acute myocardial infarction. American Heart Journal. 1996;131(4):676–680. doi: 10.1016/S0002-8703(96)90270-7.
    1. Miyao Y., Nishikimi T., Goto Y., et al. Increased plasma adrenomedullin levels in patients with acute myocardial infarction in proportion to the clinical severity. Heart. 1998;79(1):39–44. doi: 10.1136/hrt.79.1.39.
    1. Dhillon O. S., Khan S. Q., Narayan H. K., et al. Prognostic Value of Mid-Regional Pro-Adrenomedullin Levels Taken on Admission and Discharge in Non–ST-Elevation Myocardial Infarction: The LAMP (Leicester Acute Myocardial Infarction Peptide) II Study. Journal of the American College of Cardiology. 2010;56(2):125–133. doi: 10.1016/j.jacc.2010.01.060.
    1. Klip I. T., Voors A. A., Anker S. D., et al. Prognostic value of mid-regional pro-adrenomedullin in patients with heart failure after an acute myocardial infarction. Heart. 2011;97(11):892–898. doi: 10.1136/hrt.2010.210948.
    1. Khan S. Q., O’Brien R. J., Struck J., et al. Prognostic value of midregional pro-adrenomedullin in patients with acute myocardial infarction: the LAMP (Leicester Acute Myocardial Infarction Peptide) study. Journal of the American College of Cardiology. 2007;49(14):1525–1532. doi: 10.1016/j.jacc.2006.12.038.
    1. Maisel A., Mueller C., Nowak R., et al. Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. Journal of the American College of Cardiology. 2010;55(19):2062–2076. doi: 10.1016/j.jacc.2010.02.025.
    1. Falkentoft A. C., Rørth R., Iversen K., et al. MR-proADM as a prognostic marker in patients with ST-segment-elevation myocardial infarction-DANAMI-3 (a Danish Study of Optimal Acute Treatment of Patients With STEMI) Substudy. Journal of the American Heart Association. 2018;7(11, article e008123) doi: 10.1161/JAHA.117.008123.
    1. Gegenhuber A., Struck J., Dieplinger B., et al. Comparative evaluation of B-type natriuretic peptide, mid-regional pro-A-type natriuretic peptide, mid-regional pro-adrenomedullin, and copeptin to predict 1-year mortality in patients with acute destabilized heart failure. Journal of Cardiac Failure. 2007;13(1):42–49. doi: 10.1016/j.cardfail.2006.09.004.
    1. Melander O., Newton-Cheh C., Almgren P., et al. Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. JAMA. 2009;302(1):49–57. doi: 10.1001/jama.2009.943.
    1. Neumann J. T., Tzikas S., Funke-Kaiser A., et al. Association of MR-proadrenomedullin with cardiovascular risk factors and subclinical cardiovascular disease. Atherosclerosis. 2013;228(2):451–459. doi: 10.1016/j.atherosclerosis.2013.03.006.
    1. Shah K. S., Marston N. A., Mueller C., et al. Midregional proadrenomedullin predicts mortality and major adverse cardiac events in patients presenting with chest pain: results from the CHOPIN trial. Academic Emergency Medicine. 2015;22(5):554–563. doi: 10.1111/acem.12649.
    1. Sinning C., Ojeda F., Wild P. S., et al. Midregional proadrenomedullin and growth differentiation factor-15 are not influenced by obesity in heart failure patients. Clinical Research in Cardiology. 2017;106(6):401–410. doi: 10.1007/s00392-016-1066-x.
    1. Dangwal S., Schimmel K., Foinquinos A., Xiao K., Thum T. Heart Failure. Vol. 243. Cham: Springer; 2017. Noncoding RNAs in heart failure; pp. 423–445. (Handbook of Experimental Pharmacology).
    1. Vegter E. L., van der Meer P., de Windt L. J., Pinto Y. M., Voors A. A. MicroRNAs in heart failure: from biomarker to target for therapy. European Journal of Heart Failure. 2016;18(5):457–468. doi: 10.1002/ejhf.495. Epub 2016 Feb 11.
    1. Li W., Liu M., Zhao C., et al. MiR-1/133 attenuates cardiomyocyte apoptosis and electrical remodeling in mice with viral myocarditis. Cardiology Journal. 2013 doi: 10.5603/CJ.a2019.0036. [Epub ahead of print]
    1. Jodati A., Pirouzpanah S. M., Fathi Maroufi N., et al. Different expression of Micro RNA-126, 133a and 145 in aorta and saphenous vein samples of patients undergoing coronary artery bypass graft surgery. Journal of Cardiovascular and Thoracic Research. 2019;11(1):43–47. doi: 10.15171/jcvtr.2019.07.
    1. Xiao Y., Zhao J., Tuazon J. P., Borlongan C. V., Yu G. MicroRNA-133a and myocardial infarction. Cell Transplantation. 2019;28(7):831–838. doi: 10.1177/0963689719843806. [Epub ahead of print]
    1. Song J., Xie Q., Wang L., et al. The TIR/BB-loop mimetic AS-1 prevents Ang II-induced hypertensive cardiac hypertrophy via NF-κB dependent downregulation of miRNA-143. Scientific Reports. 2019;9(1):p. 6354. doi: 10.1038/s41598-019-42936-x.
    1. Shah P., Bristow M. R., Port J. D. MicroRNAs in heart failure cardiac transplantation, and myocardial recovery: biomarkers with therapeutic potential. Current Heart Failure Reports. 2017;14(6):454–464. doi: 10.1007/s11897-017-0362-8.
    1. Verjans R., Derks W. J. A., Korn K., et al. Functional screening identifies microRNAs as multi-cellular regulators of heart failure. Scientific Reports. 2019;9(1):p. 6055. doi: 10.1038/s41598-019-41491-9.
    1. Samman Tahhan A., Hammadah M., Raad M., et al. Progenitor cells and clinical outcomes in patients with acute coronary syndromes. Circulation Research. 2018;122(11):1565–1575. doi: 10.1161/CIRCRESAHA.118.312821.
    1. Shantsila E., Wrigley B. J., Shantsila A., Tapp L. D., Gill P. S., Lip G. Y. H. Monocyte-derived and CD34+/KDR+ endothelial progenitor cells in heart failure. Journal of Thrombosis and Haemostasis. 2012;10(7):1252–1261. doi: 10.1111/j.1538-7836.2012.04753.x.
    1. Nollet E., Hoymans V. Y., Rodrigus I. R., et al. Bone marrow-derived progenitor cells are functionally impaired in ischemic heart disease. Journal of Cardiovascular Translational Research. 2016;9(4):266–278. doi: 10.1007/s12265-016-9707-z.
    1. Berezin A. E., Kremzer A. A. Circulating endothelial progenitor cells as markers for severity of ischemic chronic heart failure. Journal of Cardiac Failure. 2014;20(6):438–447. doi: 10.1016/j.cardfail.2014.02.009.
    1. Berezin A. E., Kremzer A. A., Martovitskaya Y. V., et al. The utility of biomarker risk prediction score in patients with chronic heart failure. International Journal of Clinical and Experimental Medicine. 2015;8(10):18255–18264.
    1. Berezin A. E., Kremzer A. A., Samura T. A., et al. Predictive value of apoptotic microparticles to mononuclear progenitor cells ratio in advanced chronic heart failure patients. Journal of Cardiology. 2015;65(5):403–411. doi: 10.1016/j.jjcc.2014.06.014.
    1. Suárez‐Cuenca J. A., Robledo‐Nolasco R., Alcántara‐Meléndez M. A., et al. Coronary circulating mononuclear progenitor cells and soluble biomarkers in the cardiovascular prognosis after coronary angioplasty. Journal of Cellular and Molecular Medicine. 2019;23(7) doi: 10.1111/jcmm.14336.

Source: PubMed

3
Tilaa