Histatin peptides: Pharmacological functions and their applications in dentistry

Zohaib Khurshid, Shariq Najeeb, Maria Mali, Syed Faraz Moin, Syed Qasim Raza, Sana Zohaib, Farshid Sefat, Muhammad Sohail Zafar, Zohaib Khurshid, Shariq Najeeb, Maria Mali, Syed Faraz Moin, Syed Qasim Raza, Sana Zohaib, Farshid Sefat, Muhammad Sohail Zafar

Abstract

There are many human oral antimicrobial peptides responsible for playing important roles including maintenance, repairing of oral tissues (hard or soft) and defense against oral microbes. In this review we have highlighted the biochemistry, physiology and proteomics of human oral histatin peptides, secreted from parotid and submandibular salivary glands in human. The significance of these peptides includes capability for ionic binding that can kill fungal Candida albicans. They have histidine rich amino acid sequences (7-12 family members; corresponding to residues 12-24, 13-24, 12-25, 13-25, 5-11, and 5-12, respectively) for Histatin-3. However, Histatin-3 can be synthesized proteolytically from histatin 5 or 6. Due to their fungicidal response and high biocompatibility (little or no toxicity), these peptides can be considered as therapeutic agents with most probable applications for example, artificial saliva for denture wearers and salivary gland dysfunction conditions. The objectives of current article are to explore the human histatin peptides for its types, chemical and biological aspects. In addition, the potential for therapeutic bio-dental applications has been elaborated.

Keywords: Antifungal activity; Histatin; Oral cavity; Saliva.

Figures

Figure 1
Figure 1
Mechanism of action of human histatin peptides against Candida albicans.

References

    1. Amado F.M. The role of salivary peptides in dental caries. Biomed. Chromatogr. 2005;19:214–222.
    1. Cabras T., Patamia M., Melino S., Inzitari R., Messana I., Castagnola M., Petruzzelli R. Pro-oxidant activity of histatin 5 related Cu (II)-model peptide probed by mass spectrometry. Biochem. Biophys. Res. Commun. 2007;358:277–284.
    1. Cellulaire B. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics. 2002;2:3–10.
    1. Dawes C., Pedersen A.M.L., Villa A., Ekström J., Proctor G.B., Vissink A., Aframian D., McGowan R., Aliko A., Narayana N., Sia Y.W., Joshi R.K., Jensen S.B., Kerr A.R., Wolff A. The functions of human saliva: a review sponsored by the World Workshop on Oral Medicine VI. Arch. Oral Biol. 2015;60:863–874.
    1. Dawidson I., Blom M., Lundeberg T., Theodorsson E., Angmar-Månsson B. Neuropepties in the saliva of healthy subjects. Life Sci. 1996;60:269–278.
    1. De Smet K., Contreras R. Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol. Lett. 2005;27:1337–1347.
    1. Edgerton M., Koshlukova S.E., Lo T.E., Chrzan B.G., Straubinger R.M., Raj P.A. Candidacidal activity of salivary histatins identification of a histatin 5-binding protein on Candida albicans. J. Biol. Chem. 1998;273:20438–20447.
    1. Farah C.S., Ashman R.B., Challacombe S.J. Oral candidosis. Clin. Dermatol. 2000;18:553–562.
    1. Garg K., Chandra S., Raj V., Fareed W., Zafar M. Molecular and genetic aspects of odontogenic tumors: a review. Iran. J. Basic Med. Sci. 2015;18:529–536.
    1. Gorg A., Weiss W., Dunn M.J. Current two-dimensional electrophoresis technology for proteomics. Proteomics. 2004;4:3665–3685.
    1. Grogan J., McKnight C.J., Troxler R.F., Oppenheim F.G. Zinc and copper bind to unique sites of histatin 5. FEBS Lett. 2001;491:76–80.
    1. Gusman H., Travis J., Helmerhorst E.J., Potempa J., Troxler R.F., Oppenheim F.G. Salivary histatin 5 is an inhibitor of both host and bacterial enzymes implicated in periodontal disease. Infect. Immun. 2001;69:1402–1408.
    1. Halgand F., Zabrouskov V., Bassilian S., Souda P., Loo J., Faull K., Wong D., Whitelegge J. Defining intact protein primary structures from saliva: a step toward the human proteome project. Anal. Chem. 2012;84:4383–4395.
    1. Hardestam J., Petterson L., Ahlm C., Evander M., Lundkvist Å., Klingström J. Antiviral effect of human saliva against hantavirus. J. Med. Virol. 2008;80:2122–2126.
    1. Harford C., Sarkar B. Amino terminal Cu (II)-and Ni (II)-binding (ATCUN) motif of proteins and peptides: metal binding, DNA cleavage, and other properties. Acc. Chem. Res. 1997;30:123–130.
    1. Helmerhorst E.J., van’t Hof W., Breeuwer P., Veerman E.C., Abee T., Troxler R.F., Amerongen A.V., Oppenheim F.G. Characterization of histatin 5 with respect to amphipathicity, hydrophobicity, and effects on cell and mitochondrial membrane integrity excludes a candidacidal mechanism of pore formation. J. Biol. Chem. 2001;276:5643–5649.
    1. Holmberg K.V., Abdolhosseini M., Li Y., Chen X., Gorr S., Aparicio C. Bio-inspired stable antimicrobial peptide coatings for dental applications. Acta Biomater. 2013;9:8224–8231.
    1. Hu S., Loo J.A., Wong D.T. Human body fluid proteome analysis. Proteomics. 2006;6:6326–6353.
    1. Hu S., Xie Y., Ramachandran P., Ogorzalek Loo R.R., Li Y., Loo J.A., Wong D.T. Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry. Proteomics. 2005;5:1714–1728.
    1. Imatani T., Kato T., Minaguchi K., Okuda K. Histatin 5 inhibits inflammatory cytokine induction from human gingival fibroblasts by Porphyromonas gingivalis. Oral Microbiol. Immunol. 2000;15:378–382.
    1. Iqbal Z., Zafar M.S. Role of antifungal medicaments added to tissue conditioners: a systematic review. J. Prosthodont. Res. 2016;60 (E-pub ahead of print)
    1. Jhamb T., Kramer J.M. Molecular concepts in the pathogenesis of ameloblastoma: implications for therapeutics. Exp. Mol. Pathol. 2014;97:345–353.
    1. Kavanagh K., Dowd S. Histatins: antimicrobial peptides with therapeutic potential. J. Pharm. Pharmacol. 2004;56
    1. Khan S.A., Fidel P.L., Jr., Al Thunayyan A., Varlotta S., Meiller T.F., Jabra-Rizk M.A. Impaired histatin-5 levels and salivary antimicrobial activity against C. albicans in HIV infected individuals. J. AIDS Clin. Res. 2013;4
    1. Khurshid Z., Zafar M.S., Zohaib S., Najeeb S., Naseem M. Green tea (Camellia sinensis) chemistry and oral health. Open Dent. J. 2016 (E-pub ahead of print)
    1. Khurshid Z., Naseem M., Sheikh Z., Najeeb S., Shahab S., Zafar M.S. Oral antimicrobial peptides: types and role in the oral cavity. Saudi Pharm. J. 2016;24(5):515–524.
    1. Kotál J., Langhansová H., Lieskovská J., Andersen J.F., Francischetti I.M.B., Chavakis T., Kopecký J., Pedra J.H.F., Kotsyfakis M., Chmelař J. Modulation of host immunity by tick saliva. J. Proteom. 2015;128:58–68.
    1. Lamkin M.S., Oppenheim F.G. Structural features of salivary function. Crit. Rev. Oral Biol. Med. 1993;4:251–259.
    1. Loo J.A., Yan W., Ramachandran P., Wong D.T. Comparative human salivary and plasma proteomes. J. Dent. Res. 2010;89:1016–1023.
    1. McDonald E.E., Goldberg H.A., Tabbara N., Mendes F.M., Siqueira W.L. Histatin 1 resists proteolytic degradation when adsorbed to hydroxyapatite. J. Dent. Res. 2011;90:268–272.
    1. Nikawa H., Jin C., Makihira S., Hamada T., Samaranayake L.P. Susceptibility of Candida albicans isolates from the oral cavities of HIV-positive patients to histatin-5. J. Prosthet. Dent. 2002;88:263–267.
    1. Nishikata M., Kanehira T., Oh H., Tani H., Tazaki M., Kuboki Y. Salivary histatin as an inhibitor of a protease produced by the oral bacterium Bacteroides gingivalis. Biochem. Biophys. Res. Commun. 1991;174:625–630.
    1. Oppenheim F.G., Xu T., McMillian F.M., Levitz S.M., Diamond R.D., Offner G.D., Troxler R.F. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J. Biol. Chem. 1988;263:7472–7477.
    1. Oudhoff M.J., Bolscher J.G., Nazmi K., Kalay H., van ’t Hof W., Amerongen A.V., Veerman E.C. Histatins are the major wound-closure stimulating factors in human saliva as identified in a cell culture assay. FASEB J. 2008;22:3805–3812.
    1. Oudhoff M.J., van den Keijbus P.A., Kroeze K.L., Nazmi K., Gibbs S., Bolscher J.G., Veerman E.C. Histatins enhance wound closure with oral and non-oral cells. J. Dent. Res. 2009;88:846–850.
    1. Peters B.M., Shirtliff M.E., Jabra-Rizk M.A. Antimicrobial peptides: primeval molecules or future drugs. PLoS Pathog. 2010;6:e1001067.
    1. Piludu M., Lantini M.S., Cossu M., Piras M., Oppenheim F.G., Helmerhorst E.J., Siqueira W., Hand A.R. Salivary histatins in human deep posterior lingual glands (of von Ebner) Arch. Oral Biol. 2006;51:967–973.
    1. Raj P.A., Edgerton M., Levine M.J. Salivary histatin 5: dependence of sequence, chain length, and helical conformation for candidacidal activity. J. Biol. Chem. 1990;265:3898–3905.
    1. Rudney J., Staikov R., Johnson J. Potential biomarkers of human salivary function: a modified proteomic approach. Arch. Oral Biol. 2009;54:91–100.
    1. Ryley H.C. Human antimicrobial peptides. Rev. Med. Microbiol. 2001;12:177–186.
    1. Sabatini L.M., He Y., Azen E.A. Structure and sequence determination of the gene encoding human salivary statherin. Gene. 1990;89:245–251.
    1. Sabatini L., Azen E. Histatins, a family of salivary histidine-rich proteins, are encoded by at least two loci (HIS1 and HIS2) Biochem. Biophys. Res. Commun. 1989;160:495–502.
    1. Sabatini L.M., Warner T.F., Saitoh E., Azen E.A. Tissue distribution of RNAs for cystatins, histatins, statherin, and proline-rich salivary proteins in humans and macaques. J. Dent. Res. 1989;68:1138–1145.
    1. Samaranayake Y.H., Samaranayake L.P. Experimental oral candidiasis in animal models. Clin. Microbiol. Rev. 2001;14:398–429.
    1. Schrader M., Schulz-Knappe P. Peptidomics technologies for human body fluids. Trends Biotechnol. 2001;19:S55–S60.
    1. Selsted M.E., Harwig S.S., Ganz T., Schilling J.W., Lehrer R.I. Primary structures of three human neutrophil defensins. J. Clin. Invest. 1985;76:1436–1439.
    1. Siqueira W.L., Lee Y.H., Xiao Y., Held K., Wong W. Identification and characterization of histatin 1 salivary complexes by using mass spectrometry. Proteomics. 2012;12:3426–3435.
    1. Sun X., Salih E., Oppenheim F.G., Helmerhorst E.J. Kinetics of histatin proteolysis in whole saliva and the effect on bioactive domains with metal-binding, antifungal, and wound-healing properties. FASEB J. 2009;23:2691–2701.
    1. Swidergall M., Ernst J.F. Interplay between Candida albicans and the antimicrobial peptide armory. Eukaryot. Cell. 2014;13:950–957.
    1. Tati S., Li R., Puri S., Kumar R., Davidow P., Edgerton M. Histatin 5-spermidine conjugates have enhanced fungicidal activity and efficacy as a topical therapeutic for oral candidiasis. Antimicrob. Agents Chemother. 2014;58:756–766.
    1. Tay W.M., Hanafy A.I., Angerhofer A., Ming L. A plausible role of salivary copper in antimicrobial activity of histatin-5—metal binding and oxidative activity of its copper complex. Bioorg. Med. Chem. Lett. 2009;19:6709–6712.
    1. Thomadaki K., Helmerhorst E.J., Tian N., Sun X., Siqueira W.L., Walt D.R., Oppenheim F.G. Whole-saliva proteolysis and its impact on salivary diagnostics. J. Dent. Res. 2011;90:1325–1330.
    1. Trindade F., Amado F., Pinto da Costa J., Ferreira R., Maia C., Henriques I., Colaço B., Vitorino R. Salivary peptidomic as a tool to disclose new potential antimicrobial peptides. J. Proteom. 2015;115:49–57.
    1. Troxler R.F., Offner G.D., Xu T., Vanderspek J.C., Oppenheim F.G. Structural relationship between human salivary histatins. J. Dent. Res. 1990;69:2–6.
    1. Tsai H., Bobek L.A. Human salivary histatin-5 exerts potent fungicidal activity against Cryptococcus neoformans. Biochimica et Biophysica Acta (BBA) – Gen. Subjects. 1997;1336:367–369.
    1. Tsai H., Bobek L.A. Studies of the mechanism of human salivary histatin-5 candidacidal activity with histatin-5 variants and azole-sensitive and -resistant Candida species. Antimicrob. Agents Chemother. 1997;41:2224–2228.
    1. Tsai H., Bobek L.A. Human salivary histatins: promising anti-fungal therapeutic agents. Crit. Rev. Oral Biol. Med. 1998;9:480–497.
    1. Tsai H., Raj P.A., Bobek L.A. Candidacidal activity of recombinant human salivary histatin-5 and variants. Infect. Immun. 1996;64:5000–5007.
    1. Ullah R., Zafar M.S. Oral and dental delivery of fluoride: a review. Fluoride. 2015;48:195–204.
    1. Van T.H., Simoons-Smit I., NIEUW A. Synthetic histatin analogues with broad-spectrum antimicrobial activity. Biochem. J. 1997;326:39–45.
    1. Vered M., Shohat I., Buchner A. Epidermal growth factor receptor expression in ameloblastoma. Oral Oncol. 2003;39:138–143.
    1. Vitorino R., Lobo M.J., Ferrer-Correira A.J., Dubin J.R., Tomer K.B., Domingues P.M., Amado F.M. Identification of human whole saliva protein components using proteomics. Proteomics. 2004;4:1109–1115.
    1. Vukosavljevic D., Custodio W., Del Bel Cury A., Siqueira W. The effect of histatin 5, adsorbed on PMMA and hydroxyapatite, on Candida albicans colonization. Yeast. 2012;29:459–466.
    1. Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals. 2014;7:545–594.
    1. Wittmann-Liebold B., Graack H., Pohl T. Two-dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics. 2006;6:4688–4703.
    1. Wong D.T. Salivary diagnostics powered by nanotechnologies, proteomics and genomics. J. Am. Dent. Assoc. 2006;137:313–321.
    1. Xu T., Levitz S.M., Diamond R.D., Oppenheim F.G. Anticandidal activity of major human salivary histatins. Infect. Immun. 1991;59:2549–2554.
    1. Yeo I., Kim H., Lim K.S., Han J. Implant surface factors and bacterial adhesion: a review of the literature. Int. J. Artif. Organs. 2012;35:762–772.
    1. Yin A., Margolis H., Grogan J., Yao Y., Troxler R., Oppenheim F. Physical parameters of hydroxyapatite adsorption and effect on candidacidal activity of histatins. Arch. Oral Biol. 2003;48:361–368.
    1. Yoshinari M., Kato T., Matsuzaka K., Hayakawa T., Shiba K. Prevention of biofilm formation on titanium surfaces modified with conjugated molecules comprised of antimicrobial and titanium-binding peptides. Biofouling. 2010;26:103–110.
    1. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–395.
    1. Zawisza I., Mital M., Polkowska-Nowakowska A., Bonna A., Bal W. The impact of synthetic analogs of histidine on copper (II) and nickel (II) coordination properties to an albumin-like peptide. Possible leads towards new metallodrugs. J. Inorg. Biochem. 2014;139:1–8.

Source: PubMed

3
Tilaa