P-cresol Alters Brain Dopamine Metabolism and Exacerbates Autism-Like Behaviors in the BTBR Mouse

Tiziana Pascucci, Marco Colamartino, Elena Fiori, Roberto Sacco, Annalisa Coviello, Rossella Ventura, Stefano Puglisi-Allegra, Laura Turriziani, Antonio M Persico, Tiziana Pascucci, Marco Colamartino, Elena Fiori, Roberto Sacco, Annalisa Coviello, Rossella Ventura, Stefano Puglisi-Allegra, Laura Turriziani, Antonio M Persico

Abstract

Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction/communication, stereotypic behaviors, restricted interests, and abnormal sensory-processing. Several studies have reported significantly elevated urinary and foecal levels of p-cresol in ASD children, an aromatic compound either of environmental origin or produced by specific gut bacterial strains. Methods: Since p-cresol is a known uremic toxin, able to negatively affect multiple brain functions, the present study was undertaken to assess the effects of a single acute injection of low- or high-dose (1 or 10 mg/kg i.v. respectively) of p-cresol in behavioral and neurochemical phenotypes of BTBR mice, a reliable animal model of human ASD. Results: P-cresol significantly increased anxiety-like behaviors and hyperactivity in the open field, in addition to producing stereotypic behaviors and loss of social preference in BTBR mice. Tissue levels of monoaminergic neurotransmitters and their metabolites unveiled significantly activated dopamine turnover in amygdala as well as in dorsal and ventral striatum after p-cresol administration; no effect was recorded in medial-prefrontal cortex and hippocampus. Conclusion: Our study supports a gene x environment interaction model, whereby p-cresol, acting upon a susceptible genetic background, can acutely induce autism-like behaviors and produce abnormal dopamine metabolism in the reward circuitry.

Keywords: autism spectrum disorder (ASD), biomarker; dopamine; mouse social behavior; p-cresol.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
P-cresol enhances anxiety-like behaviors, stereotypies, locomotor parameters and hinders social preference in BTBR mice. (A) Total entries, % of time spent and entries in open arms in the Elevated Plus Maze. (B) Distance travelled and speed in the Open Field Test after acute p-cresol treatment. (C) Schematic representation of the Object Recognition Test. (D) Time spent grooming during the first session of the Object Recognition Test. (E) Time spent exploring the novel or familiar object during the test session of the Object Recognition Test. (F) Schematic representation of the three-chamber Social Interaction Test. (G) Time in object and subject zones during the Social Interaction Test session. (H) Time spent in contact with the object or with the social intruder during the Social Interaction Test. Results are shown as mean ± sem. *, **, *** p < 0.05, p < 0.01, p < 0.001 P-C1 or P-C10 vs. CNTR. ^^ p < 0.01 P-C10 vs. P-C1, ##p < 0.01 old vs. new, §§, §§§p < 0.01, p < 0.001 subject vs. object.
Figure 2
Figure 2
P-cresol enhances tissue levels of dopamine and its metabolites in the amygdala, caudate putamen and nucleus accumbens of BTBR mice. (A) Tissue levels of DA, DOPAC, HVA, NE, 5-HT and 5-HIAA, measured in medial pFC, NAc, CP, HIP, AMY. (B) Tissue levels of DA, DOPAC, HVA, measured in NAc, CP and AMY. CNTR, n = 9–10; P-C1, n = 6, P-C10 n = 6. Data are expressed as mean ± sem ng/g wet weight. *, **, *** p < 0.05, 0.01, 0.001 P-C1 or P-C10 vs. CNTR group. ##, ###p < 0.01, 0.001 P-C10 vs. P-C1 (treatment effect) by Duncan’s post-hoc test following one-way ANOVAs. Abbreviations: AMY: Amygdala; CP: Caudate Putamen; DA: dopamine; DOPAC: 3,4-Dihydroxyphenylacetic acid; HIP: Hippocampus; HVA: Homovanillic acid; NAc: Nucleus Accumbens; pFC: preFrontal Cortex.

References

    1. Diagnostic and Statistical Manual of Mental Disorders: DSM-5. American Psychiatric Association; Arlington, VA, USA: 2013.
    1. Baio J., Wiggins L., Christensen D.L., Maenner M.J., Daniels J., Warren Z., Kurzius-Spencer M., Zahorodny W., Robinson Rosenberg C., White T., et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012. MMWR Morb. Mortal. Wkly. Rep. 2018;67:1279.
    1. Baron-Cohen S., Scott F.J., Allison C., Williams J., Bolton P., Matthews F.E., Brayne C. Prevalence of Autism-Spectrum Conditions: UK School-Based Population Study. Br. J. Psychiatry. 2009;194:500–509. doi: 10.1192/bjp.bp.108.059345.
    1. Fombonne E. Epidemiology of Pervasive Developmental Disorders. Pediatric Res. 2009;65:591–598. doi: 10.1203/PDR.0b013e31819e7203.
    1. Bourgeron T. From the Genetic Architecture to Synaptic Plasticity in Autism Spectrum Disorder. Nat. Rev. Neurosci. 2015;16:551–563. doi: 10.1038/nrn3992.
    1. Mandy W., Lai M.-C. Annual Research Review: The Role of the Environment in the Developmental Psychopathology of Autism Spectrum Condition. J. Child Psychol. Psychiatry. 2016;57:271–292. doi: 10.1111/jcpp.12501.
    1. Hertz-Picciotto I., Schmidt R.J., Krakowiak P. Understanding Environmental Contributions to Autism: Causal Concepts and the State of Science. Autism Res. 2018;11:554–586. doi: 10.1002/aur.1938.
    1. Gottesman I.I., Shields J. Genetic Theorizing and Schizophrenia. Br. J. Psychiatry. 1973;122:15–30. doi: 10.1192/bjp.122.1.15.
    1. Persico A.M., Sacco R. Endophenotypes in Autism Spectrum Disorders. In: Patel V.B., Preedy V.R., Martin C.R., editors. The Comprehensive Guide to Autism. Springer Science+Business Media; New York, NY, USA: 2014. pp. 77–96.
    1. Emond P., Mavel S., Aïdoud N., Nadal-Desbarats L., Montigny F., Bonnet-Brilhault F., Barthélémy C., Merten M., Sarda P., Laumonnier F., et al. GC-MS-Based Urine Metabolic Profiling of Autism Spectrum Disorders. Anal. Bioanal. Chem. 2013;405:5291–5300. doi: 10.1007/s00216-013-6934-x.
    1. Gevi F., Zolla L., Gabriele S., Persico A.M. Urinary Metabolomics of Young Italian Autistic Children Supports Abnormal Tryptophan and Purine Metabolism. Mol. Autism. 2016;7:47. doi: 10.1186/s13229-016-0109-5.
    1. Altieri L., Neri C., Sacco R., Curatolo P., Benvenuto A., Muratori F., Santocchi E., Bravaccio C., Lenti C., Saccani M., et al. Urinary p-Cresol Is Elevated in Small Children with Severe Autism Spectrum Disorder. Biomarkers. 2011;16:252–260. doi: 10.3109/1354750X.2010.548010.
    1. Gabriele S., Sacco R., Cerullo S., Neri C., Urbani A., Tripi G., Malvy J., Barthelemy C., Bonnet-Brihault F., Persico A.M. Urinary p-Cresol Is Elevated in Young French Children with Autism Spectrum Disorder: A Replication Study. Biomarkers. 2014;19:463–470. doi: 10.3109/1354750X.2014.936911.
    1. De Angelis M., Piccolo M., Vannini L., Siragusa S., Giacomo A.D., Serrazzanetti D.I., Cristofori F., Guerzoni M.E., Gobbetti M., Francavilla R. Fecal Microbiota and Metabolome of Children with Autism and Pervasive Developmental Disorder Not Otherwise Specified. PLoS ONE. 2013;8:e76993. doi: 10.1371/journal.pone.0076993.
    1. Kang D.-W., Ilhan Z.E., Isern N.G., Hoyt D.W., Howsmon D.P., Shaffer M., Lozupone C.A., Hahn J., Adams J.B., Krajmalnik-Brown R. Differences in Fecal Microbial Metabolites and Microbiota of Children with Autism Spectrum Disorders. Anaerobe. 2018;49:121–131. doi: 10.1016/j.anaerobe.2017.12.007.
    1. Gabriele S., Sacco R., Altieri L., Neri C., Urbani A., Bravaccio C., Riccio M.P., Iovene M.R., Bombace F., Magistris L.D., et al. Slow Intestinal Transit Contributes to Elevate Urinary p-Cresol Level in Italian Autistic Children. Autism Res. 2016;9:752–759. doi: 10.1002/aur.1571.
    1. Persico A.M., Napolioni V. Urinary p-Cresol in Autism Spectrum Disorder. Neurotoxicol. Teratol. 2013;36:82–90. doi: 10.1016/j.ntt.2012.09.002.
    1. Yehuda S., Carasso R.L., Mostofsky D.I. Essential Fatty Acid Preparation (SR-3) Raises the Seizure Threshold in Rats. Eur. J. Pharmacol. 1994;254:193–198. doi: 10.1016/0014-2999(94)90387-5.
    1. Calderón-Guzmán D., Hernández-Islas J.L., Vázquez I.R.E., Barragán-Mejía G., Hernández-García E., Angel D.S.D., Juárez-Olguín H. Effect of Toluene and Cresols on Na, K-ATPase, and Serotonin in Rat Brain. Regul. Toxicol. Pharmacol. 2005;41:1–5. doi: 10.1016/j.yrtph.2004.09.005.
    1. Goodhart P.J., Dewolf W.E., Kruse L.I. Mechanism-Based Inactivation of Dopamine. Beta.-Hydroxylase by p-Cresol and Related Alkylphenols. Biochemistry. 1987;26:2576–2583. doi: 10.1021/bi00383a025.
    1. Patterson P.H. Modeling Autistic Features in Animals. Pt 2Pediatric Res. 2011;69:34R–40R. doi: 10.1203/PDR.0b013e318212b80f.
    1. Crawley J.N. Translational animal models of autism and neurodevelopmental disorders. Dialogues. Clin. Neurosci. 2012;14:293–305.
    1. Silverman J.L., Yang M., Lord C., Crawley J.N. Behavioural Phenotyping Assays for Mouse Models of Autism. Nat. Rev. Neurosci. 2010;11:490–502. doi: 10.1038/nrn2851.
    1. Courchesne E., Pramparo T., Gazestani V.H., Lombardo M.V., Pierce K., Lewis N.E. The ASD Living Biology: From Cell Proliferation to Clinical Phenotype. Mol. Psychiatry. 2019;24:88–107. doi: 10.1038/s41380-018-0056-y.
    1. Amaral D.G., Schumann C.M., Nordahl C.W. Neuroanatomy of Autism. Trends Neurosci. 2008;31:137–145. doi: 10.1016/j.tins.2007.12.005.
    1. Schubert D., Martens G.J.M., Kolk S.M. Molecular Underpinnings of Prefrontal Cortex Development in Rodents Provide Insights into the Etiology of Neurodevelopmental Disorders. Mol. Psychiatry. 2015;20:795–809. doi: 10.1038/mp.2014.147.
    1. Meyza K.Z., Defensor E.B., Jensen A.L., Corley M.J., Pearson B.L., Pobbe R.L., Bolivar V.J., Blanchard D.C., Blanchard R.J. The BTBR T Tf/J Mouse Model for Autism Spectrum Disorders–in Search of Biomarkers. Behav. Brain Res. 2013;251:25–34. doi: 10.1016/j.bbr.2012.07.021.
    1. Ellegood J., Crawley J.N. Behavioral and Neuroanatomical Phenotypes in Mouse Models of Autism. Neurotherapeutics. 2015;12:521–533. doi: 10.1007/s13311-015-0360-z.
    1. Pascucci T., Giacovazzo G., Andolina D., Accoto A., Fiori E., Ventura R., Orsini C., Conversi D., Carducci C., Leuzzi V., et al. Behavioral and Neurochemical Characterization of New Mouse Model of Hyperphenylalaninemia. PLoS ONE. 2013;8:e84697. doi: 10.1371/journal.pone.0084697.
    1. Nadler J.J., Moy S.S., Dold G., Simmons N., Perez A., Young N.B., Barbaro R.P., Piven J., Magnuson T.R., Crawley J.N. Automated Apparatus for Quantitation of Social Approach Behaviors in Mice. GenesBrain Behav. 2004;3:303–314. doi: 10.1111/j.1601-183X.2004.00071.x.
    1. Fiori E., Oddi D., Ventura R., Colamartino M., Valzania A., D’Amato F.R., Bruinenberg V., Zee E.V.D., Puglisi-Allegra S., Pascucci T. Early-Onset Behavioral and Neurochemical Deficits in the Genetic Mouse Model of Phenylketonuria. PLoS ONE. 2017;12:e0183430. doi: 10.1371/journal.pone.0183430.
    1. Pascucci T., Rossi L., Colamartino M., Gabucci C., Carducci C., Valzania A., Sasso V., Bigini N., Pierigè F., Viscomi M.T., et al. A New Therapy Prevents Intellectual Disability in Mouse with Phenylketonuria. Mol. Genet. Metab. 2018;124:39–49. doi: 10.1016/j.ymgme.2018.03.009.
    1. Puglisi-Allegra S., Cabib S., Pascucci T., Ventura R., Cali F., Romano V. Dramatic Brain Aminergic Deficit in a Genetic Mouse Model of Phenylketonuria. NeuroReport. 2000;11:1361–1364. doi: 10.1097/00001756-200004270-00042.
    1. Moy S., Nadler J., Young N., Perez A., Holloway L., Barbaro R., Barbaro J., Wilson L., Threadgill D., Lauder J. Mouse Behavioral Tasks Relevant to Autism: Phenotypes of 10 Inbred Strains. Behav. Brain Res. 2007;176:4–20. doi: 10.1016/j.bbr.2006.07.030.
    1. Berenguer-Forner C., Miranda-Casas A., Pastor-Cerezuela G., Roselló-Miranda R. Comorbidity of autism spectrum disorder and attention deficit with hyperactivity. A review study. Rev. De Neurol. 2015;60(Suppl. 1):S37–S43.
    1. Van Steensel F.J.A., Bögels S.M., Perrin S. Anxiety Disorders in Children and Adolescents with Autistic Spectrum Disorders: A Meta-Analysis. Clin. Child Fam. Psychol. Rev. 2011;14:302–317. doi: 10.1007/s10567-011-0097-0.
    1. Bales K.L., Solomon M., Jacob S., Crawley J.N., Silverman J.L., Larke R.H., Sahagun E., Puhger K.R., Pride M.C., Mendoza S.P. Long-Term Exposure to Intranasal Oxytocin in a Mouse Autism Model. Transl. Psychiatry. 2014;4:e480. doi: 10.1038/tp.2014.117.
    1. Segal-Gavish H., Karvat G., Barak N., Barzilay R., Ganz J., Edry L., Aharony I., Offen D., Kimchi T. Mesenchymal Stem Cell Transplantation Promotes Neurogenesis and Ameliorates Autism Related Behaviors in BTBR Mice. Autism Res. 2016;9:17–32. doi: 10.1002/aur.1530.
    1. Yang M., Abrams D.N., Zhang J.Y., Weber M.D., Katz A.M., Clarke A.M., Silverman J.L., Crawley J.N. Low Sociability in BTBR T Tf/J Mice Is Independent of Partner Strain. Physiol. Behav. 2012;107:649–662. doi: 10.1016/j.physbeh.2011.12.025.
    1. McFarlane H.G., Kusek G.K., Yang M., Phoenix J.L., Bolivar V.J., Crawley J.N. Autism-like Behavioral Phenotypes in BTBR T Tf/J Mice. GenesBrain Behav. 2008;7:152–163. doi: 10.1111/j.1601-183X.2007.00330.x.
    1. Silverman J., Oliver C., Karras M., Gastrell P., Crawley J. AMPAKINE Enhancement of Social Interaction in the BTBR Mouse Model of Autism. Neuropharmacology. 2013;64:268–282. doi: 10.1016/j.neuropharm.2012.07.013.
    1. Zhang W.Q., Smolik C.M., Barba-Escobedo P.A., Gamez M., Sanchez J.J., Javors M.A., Daws L.C., Gould G.G. Acute Dietary Tryptophan Manipulation Differentially Alters Social Behavior, Brain Serotonin and Plasma Corticosterone in Three Inbred Mouse Strains. Neuropharmacology. 2015;90:1–8. doi: 10.1016/j.neuropharm.2014.10.024.
    1. Cabib S., Pascucci T., Ventura R., Romano V., Puglisi-Allegra S. The behavioral profile of severe mental retardation in a genetic mouse model of Phenylketonuria, Behav. Genet. 2003;33:301–310.
    1. Andolina D., Conversi D., Cabib S., Trabalza A., Ventura R., Puglisi-Allegra S., Pascucci T. 5-Hydroxytryptophan during postnatal period improves cognitive performances and promotes dendritic spine maturation in genetic mouse model of Phenylketonuria. Int. J. Neuropsychopharmacol. 2010;14:479–489. doi: 10.1017/S1461145710001288.
    1. Pobbe R.L.H., Defensor E.B., Pearson B.L., Blanchard V.J.C., Blancharda R.J. General and social anxiety in the BTBR T+ tf/J mouse strain Behav. Brain Res. 2011;216:446–451.
    1. Bruinenberg V.M., van der Goot E., van Vliet D., de Groot M.J., Mazzola P.N., Heiner-Fokkema M.R., van Faassen M., van Spronsen F.J., van der Zee E.A. The behavioral consequence of Phenylketonuria in mice depends on the genetic background. Front. Behav. Neurosci. 2016;10:233. doi: 10.3389/fnbeh.2016.00233.
    1. Zilkha N., Kuperman Y., Kimchi T. High-fat diet exacerbates cognitive rigidity and social deficiency in the BTBR mouse model of autism. Neuroscience. 2017;345:142–154. doi: 10.1016/j.neuroscience.2016.01.070.
    1. Schindler C., Persico A., Uhl G., Goldberg S. Behavioral Assessment of High-Dose Amphetamine Withdrawal: Importance of Training and Testing Conditions. Pharmacol. Biochem. Behav. 1994;49:41–46. doi: 10.1016/0091-3057(94)90454-5.
    1. Graybiel A.M. Habits, Rituals, and the Evaluative Brain. Annu. Rev. Neurosci. 2008;31:359–387. doi: 10.1146/annurev.neuro.29.051605.112851.
    1. Campbell N.G., Shekar A., Aguilar J.I., Peng D., Navratna V., Yang D., Morley A.N., Duran A.M., Galli G., O’Grady B., et al. Structural, functional, and behavioral insights of dopamine dysfunction revealed by a deletion in SLC6A3. Proc. Natl. Acad. Sci. USA. 2019;116:3853–3862. doi: 10.1073/pnas.1816247116.
    1. Tanaka M., Sato A., Kasai S., Hagino Y., Kotajima-Murakami H., Kashii H., Takamatsu Y., Nishito Y., Inagaki M., Mizuguchi M., et al. Brain hyperserotonemia causes autism-relevant social deficits in mice. Mol. Autism. 2018;9:60. doi: 10.1186/s13229-018-0243-3.
    1. Pavăl D. A Dopamine Hypothesis of Autism Spectrum Disorder. Dev. Neurosci. 2017;39:355–360. doi: 10.1159/000478725.
    1. Lee Y., Kim H., Kim J.-E., Park J.-Y., Choi J., Lee J.-E., Lee E.-H., Han P.-L. Excessive D1 Dopamine Receptor Activation in the Dorsal Striatum Promotes Autistic-Like Behaviors. Mol. Neurobiol. 2018;55:5658–5671. doi: 10.1007/s12035-017-0770-5.
    1. Squillace M., Dodero L., Federici M., Migliarini S., Errico F., Napolitano F., Krashia P., Di Maio A., Galbusera A., Bifone A., et al. Dysfunctional dopaminergic neurotransmission in asocial BTBR mice. Transl. Psychiatry. 2014;4:e427. doi: 10.1038/tp.2014.69.
    1. Kohls G., Schulte-Rüther M., Nehrkorn B., Müller K., Fink G.R., Kamp-Becker I., Herpertz-Dahlmann B., Schultz R.T., Konrad K. Reward system dysfunction in autism spectrum disorders. Soc. Cogn. Affect. Neurosci. 2013;8:565–572. doi: 10.1093/scan/nss033.
    1. Hernandez L.M., Rudie J.D., Green S.A., Bookheimer S., Dapretto M. Neural Signatures of Autism Spectrum Disorders: Insights into Brain Network Dynamics. Neuropsychopharmacology. 2015;40:171–189. doi: 10.1038/npp.2014.172.
    1. Dichter G.S., Felder J.N., Green S.R., Rittenberg A.M., Sasson N.J., Bodfish J.W. Reward Circuitry Function in Autism Spectrum Disorders. Soc. Cogn. Affect. Neurosci. 2012;7:160–172. doi: 10.1093/scan/nsq095.
    1. Sasson N.J., Dichter G.S., Bodfish J.W. Affective Responses by Adults with Autism Are Reduced to Social Images but Elevated to Images Related to Circumscribed Interests. PLoS ONE. 2012;7:e42457. doi: 10.1371/journal.pone.0042457.
    1. Stavropoulos K.K., Carver L.J. Reward Anticipation and Processing of Social versus Nonsocial Stimuli in Children with and without Autism Spectrum Disorders. J. Child Psychol. Psychiatry. 2014;55:1398–1408. doi: 10.1111/jcpp.12270.
    1. Russo S.J., Dietz D.M., Dumitriu D., Morrison J.H., Malenka R.C., Nestler E.J. The Addicted Synapse: Mechanisms of Synaptic and Structural Plasticity in Nucleus Accumbens. Trends Neurosci. 2010;33:267–276. doi: 10.1016/j.tins.2010.02.002.
    1. MacFabe D.F. Short-Chain Fatty Acid Fermentation Products of the Gut Microbiome: Implications in Autism Spectrum Disorders. Microb. Ecol. Health Dis. 2012;23:19260. doi: 10.3402/mehd.v23i0.19260.
    1. Rubenstein J.L.R., Merzenich M.M. Model of Autism: Increased Ratio of Excitation/Inhibition in Key Neural Systems. Genes Brain Behav. 2003;2:255–267. doi: 10.1034/j.1601-183X.2003.00037.x.
    1. Gabriele S., Sacco R., Persico A.M. Blood Serotonin Levels in Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Eur. Neuropsychopharmacol. 2014;24:919–929. doi: 10.1016/j.euroneuro.2014.02.004.
    1. Pagan C., Delorme R., Callebert J., Goubran-Botros H., Amsellem F., Drouot X., Boudebesse C., Dudal K.L., Ngo-Nguyen N., Laouamri H., et al. The Serotonin-N-Acetylserotonin–Melatonin Pathway as a Biomarker for Autism Spectrum Disorders. Transl. Psychiatry. 2014;4:e479. doi: 10.1038/tp.2014.120.
    1. Kang D.W., Adams J.B., Coleman D.M., Pollard E.L., Maldonado J., Mcdonough-Means S., Caporaso J.G., Krajmalnik-Brown R. Long-Term Benefit of Microbiota Transfer Therapy on Autism Symptoms and Gut Microbiota. Sci. Rep. 2019;9:5821. doi: 10.1038/s41598-019-42183-0.
    1. Dölen G. Autism: Oxytocin, Serotonin, and Social Reward. Soc. Neurosci. 2015;10:450–465. doi: 10.1080/17470919.2015.1087875.

Source: PubMed

3
Tilaa