Defining cognitive impairment in people-living-with-HIV: the POPPY study

Davide De Francesco, Jonathan Underwood, Frank A Post, Jaime H Vera, Ian Williams, Marta Boffito, Memory Sachikonye, Jane Anderson, Patrick W G Mallon, Alan Winston, Caroline A Sabin, POPPY study group, Davide De Francesco, Jonathan Underwood, Frank A Post, Jaime H Vera, Ian Williams, Marta Boffito, Memory Sachikonye, Jane Anderson, Patrick W G Mallon, Alan Winston, Caroline A Sabin, POPPY study group

Abstract

Background: The reported prevalence of cognitive impairment (CI) varies widely in cohorts of people living with HIV (PLWH); this may partly be due to the use of different diagnostic criteria. Agreement between diagnostic criteria of CI, the optimal definition to use, and associations with patient-reported cognitive symptoms have not been fully investigated.

Methods: Two hundred ninety PLWH aged >50 years and 97 matched negative controls completed a detailed assessment of cognitive function and three questions regarding cognitive symptoms. Age- and education-adjusted test scores (T-scores) determined if subjects met the following definitions of CI: Frascati, global deficit score (GDS) and the multivariate normative comparison (MNC) method.

Results: PLWH were more likely than controls to meet each definition of CI (ORs were 2.17, 3.12 and 3.64 for Frascati, GDS and MNC, respectively). Agreement of MNC with Frascati and GDS was moderate (Cohen's k = 0.42 and 0.48, respectively), whereas that between Frascati and GDS was good (k = 0.74). A significant association was found between all the three criteria and reporting of memory loss but not with attention and reasoning problems. The 41 (14 %) PLWH meeting all the three criteria had the lowest median global T-score (36.9) and highest rate of symptom reporting (42 %).

Conclusions: Different CI criteria show fair diagnostic agreement, likely reflecting their ability to exclude CI in the same group of individuals. Given the lower overall cognitive performance and higher rates of symptom reporting in those meeting all three criteria of CI, further work assessing this as a definition of CI in PLWH is justified.

Keywords: Cognitive impairment; HIV; HIV-associated neurocognitive disorder; Neurology; Patient-reported cognitive symptoms.

Figures

Fig. 1
Fig. 1
Classification of CI among HIV-positive individuals according to the three criteria and agreement between criteria in HIV-positive and HIV-negative participants
Fig. 2
Fig. 2
Domain T-scores in HIV-positive individuals classified as cognitively impaired by the three criteria
Fig. 3
Fig. 3
Median global T-score (a) and proportion of subjects reporting two or more cognitive problems (b) by subset of HIV-positive participants meeting different combinations of the three definitions of CI

References

    1. Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, et al. The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS. 2007;21(14):1915–21. doi: 10.1097/QAD.0b013e32828e4e27.
    1. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, LeBlanc S, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol. 2011;17(1):3–16. doi: 10.1007/s13365-010-0006-1.
    1. Winston A, Arenas-Pinto A, Stöhr W, Fisher M, Orkin CM, Aderogba K, et al. Neurocognitive function in HIV infected patients on antiretroviral therapy. 2013.
    1. Simioni S, Cavassini M, Annoni J-M, Abraham AR, Bourquin I, Schiffer V, et al. Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS. 2010;24(9):1243–50.
    1. EACS . Guidelines version 8.0 October 2015. 2015.
    1. Reid LM, MacLullich AM. Subjective memory complaints and cognitive impairment in older people. Dement Geriatr Cogn Disord. 2006;22(5-6):471–85. doi: 10.1159/000096295.
    1. Antinori A, Arendt G, Becker J, Brew B, Byrd D, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–99. doi: 10.1212/01.WNL.0000287431.88658.8b.
    1. Carey CL, Woods SP, Gonzalez R, Conover E, Marcotte TD, Grant I, et al. Predictive validity of global deficit scores in detecting neuropsychological impairment in HIV infection. J Clin Exp Neuropsychol. 2004;26(3):307–19. doi: 10.1080/13803390490510031.
    1. Huizenga HM, Smeding H, Grasman RPPP, Schmand B. Multivariate normative comparisons. Neuropsychologia. 2007;45(11):2534–42. doi: 10.1016/j.neuropsychologia.2007.03.011.
    1. Su T, Schouten J, Geurtsen GJ, Wit FW, Stolte IG, Prins M, et al. Multivariate normative comparison, a novel method for more reliably detecting cognitive impairment in HIV infection. AIDS. 2015;29(5):547–57.
    1. Gisslén M, Price RW, Nilsson S. The definition of HIV-associated neurocognitive disorders: are we overestimating the real prevalence? BMC Infect Dis. 2011;11(1):1. doi: 10.1186/1471-2334-11-356.
    1. Knippels HM, Goodkin K, Weiss JJ, Wilkie FL, Antoni MH. The importance of cognitive self-report in early HIV-1 infection: validation of a cognitive functional status subscale. AIDS. 2002;16(2):259–67. doi: 10.1097/00002030-200201250-00016.
    1. Carter SL, Rourke SB, Murji S, Shore D, Rourke BP. Cognitive complaints, depression, medical symptoms, and their association with neuropsychological functioning in HIV infection: a structural equation model analysis. Neuropsychology. 2003;17(3):410. doi: 10.1037/0894-4105.17.3.410.
    1. Hinkin CH, van Gorp WG, Satz P, Marcotte T, Durvasula RS, Wood S, et al. Actual versus self-reported cognitive dysfunction in HIV-1 infection: memory-metamemory dissociations. J Clin Exp Neuropsychol. 1996;18(3):431–43. doi: 10.1080/01688639608408999.
    1. Van Gorp WG, Satz P, Hinkin C, Selnes O, Miller EN, McArthur J, et al. Metacognition in HIV-1 seropositive asymptomatic individuals: self-ratings versus objective neuropsychological performance. J Clin Exp Neuropsychol. 1991;13(5):812–9. doi: 10.1080/01688639108401091.
    1. Cogstate website. 2016. . Accessed 17 October 2016.
    1. Darby DG, Pietrzak RH, Fredrickson J, Woodward M, Moore L, Fredrickson A, et al. Intraindividual cognitive decline using a brief computerized cognitive screening test. Alzheimers Dement. 2012;8(2):95–104. doi: 10.1016/j.jalz.2010.12.009.
    1. Harrison J, Maruff P. Measuring the mind: assessing cognitive change in clinical drug trials. Expert Rev Clin Pharmacol. 2008;1(4):471. doi: 10.1586/17512433.1.4.471.
    1. Maruff P, Thomas E, Cysique L, Brew B, Collie A, Snyder P, et al. Validity of the CogState brief battery: relationship to standardized tests and sensitivity to cognitive impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia complex. Arch Clin Neuropsychol. 2009;24(2):165–78. doi: 10.1093/arclin/acp010.
    1. Steinberg SI, Sammel MD, Harel BT, Schembri A, Policastro C, Bogner HR, et al. Exercise, sedentary pastimes, and cognitive performance in healthy older adults. Am J Alzheimers Dis Other Demen. 2015; 30(3):290-98.
    1. Cysique LA, Maruff P, Darby D, Brew BJ. The assessment of cognitive function in advanced HIV-1 infection and AIDS dementia complex using a new computerised cognitive test battery. Arch Clin Neuropsychol. 2006;21(2):185–94. doi: 10.1016/j.acn.2005.07.011.
    1. McDonnell J, Haddow L, Daskalopoulou M, Lampe F, Speakman A, Gilson R, et al. Minimal cognitive impairment in UK HIV-positive men who have sex with men: effect of case definitions and comparison with the general population and HIV-negative men. J Acquir Immune Defic Syndr (1999) 2014;67(2):120. doi: 10.1097/QAI.0000000000000273.
    1. Overton ET, Kauwe JS, Paul R, Tashima K, Tate DF, Patel P, et al. Performances on the CogState and standard neuropsychological batteries among HIV patients without dementia. AIDS Behav. 2011;15(8):1902–9. doi: 10.1007/s10461-011-0033-9.
    1. Garvey LJ, Yerrakalva D, Winston A. Correlations between computerized battery testing and a memory questionnaire for identification of neurocognitive impairment in HIV type 1-infected subjects on stable antiretroviral therapy. AIDS Res Hum Retrovir. 2009;25(8):765–9. doi: 10.1089/aid.2008.0292.
    1. Fleiss JL, Cohen J, Everitt B. Large sample standard errors of kappa and weighted kappa. Psychol Bull. 1969;72(5):323. doi: 10.1037/h0028106.
    1. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.
    1. Fleiss JL, Levin B, Paik MC. Statistical methods for rates and proportions. John Wiley & Sons, New York; 2013.
    1. Nakasujja N, Miyahara S, Evans S, Lee A, Musisi S, Katabira E, et al. Randomized trial of minocycline in the treatment of HIV-associated cognitive impairment. Neurology. 2013;80(2):196–202. doi: 10.1212/WNL.0b013e31827b9121.
    1. Fellows RP, Byrd DA, Morgello S. Major depressive disorder, cognitive symptoms, and neuropsychological performance among ethnically diverse HIV+ men and women. J Int Neuropsychol Soc. 2013;19(02):216–25. doi: 10.1017/S1355617712001245.
    1. Heaton RK, Franklin DR, Deutsch R, Letendre S, Ellis RJ, Casaletto K, et al. Neurocognitive change in the era of HIV combination antiretroviral therapy: the longitudinal CHARTER study. Clin Infect Dis. 2015;60(3):473–80. doi: 10.1093/cid/ciu862.
    1. Donovan NJ, Amariglio RE, Zoller AS, Rudel RK, Gomez-Isla T, Blacker D, et al. Subjective cognitive concerns and neuropsychiatric predictors of progression to the early clinical stages of Alzheimer disease. Am J Geriatr Psychiatry. 2014;22(12):1642–51. doi: 10.1016/j.jagp.2014.02.007.

Source: PubMed

3
Tilaa