Effects of omega-3 carboxylic acids on lipoprotein particles and other cardiovascular risk markers in high-risk statin-treated patients with residual hypertriglyceridemia: a randomized, controlled, double-blind trial

Richard L Dunbar, Stephen J Nicholls, Kevin C Maki, Eli M Roth, David G Orloff, Danielle Curcio, Judith Johnson, Douglas Kling, Michael H Davidson, Richard L Dunbar, Stephen J Nicholls, Kevin C Maki, Eli M Roth, David G Orloff, Danielle Curcio, Judith Johnson, Douglas Kling, Michael H Davidson

Abstract

Background: This study examined the effects of a mixture of highly bioavailable omega-3 carboxylic acids (OM3-CA) on nuclear magnetic resonance spectroscopy-assessed lipoprotein particle concentrations and sizes and other cardiovascular risk markers in statin-treated patients with fasting triglycerides (TG) ≥ 2.3 mmol/L (200 mg/dL) and <5.6 mmol/L (500 mg/dL) and at high cardiovascular risk.

Methods: After a diet lead-in and statin-stabilization period, 647 patients were randomly assigned to receive capsules of control (olive oil, OO) 4 g/d, OM3-CA 2 g/d (plus OO 2 g/d), or OM3-CA 4 g/d for 6 weeks.

Results: Compared with OO, low-density lipoprotein (LDL) particle size was increased with OM3-CA 2 g/d (p < 0.01) and 4 g/d (p < 0.001), and very low-density lipoprotein (VLDL) and high-density lipoprotein (HDL) particle sizes were decreased with both OM3-CA dosages vs. OO (p < 0.001 and p < 0.05 for VLDL and HDL, respectively). Total VLDL/chylomicron remnant particle concentration was reduced by 8.5 and 16.0 % with OM3-CA 2 and 4 g/d, respectively, vs. a 6.9 % reduction with OO (p < 0.001 for OM3-CA 4 g/d vs. OO). Total HDL particle concentration was also reduced by 1.5 and 3.2 % with OM3-CA 2 and 4 g/d, respectively, vs. a 0.6 % increase with OO (at least p < 0.05 for both comparisons). Changes in total LDL particle concentration were not significantly different for OO vs. OM3-CA at either dosage. Apolipoprotein (Apo) CIII levels decreased by 7.6 and 13.1 % with OM3-CA 2 and 4 g/d, respectively, vs. 3.2 % with OO (p < 0.001 for OM3-CA 4 g/d vs. OO). Lipoprotein-associated phospholipase A2 (Lp-PLA2) mass was reduced by 6.2 and 10.7 % with OM3-CA 2 and 4 g/d, respectively, vs. a 0.1 % increase with OO (p < 0.001 for both vs. OO). There were no significant differences between treatments in high-sensitivity C-reactive protein responses.

Conclusion: OM3-CA were associated with shifts in lipoprotein particle sizes and concentrations, and reductions in Apo CIII and Lp-PLA2, in patients with hypertriglyceridemia while taking a statin.

Trial registration: ClinicalTrials.gov Identifier NCT01408303.

Figures

Fig. 1
Fig. 1
Percent changes from baseline in apolipoprotein CIII and lipoprotein-associated phospholipase A2 concentrations. Patients in the statin + OM3-CA 2 g/d group also received OO control at a dosage of 2 g/d. Superscript asterisks represent a significant difference vs. OO control (p < 0.001). Abbreviations: Apo = apolipoprotein, Lp-PLA2 = lipoprotein-associated phospholipase A2, LSM-BT = least-squares means–back transformed, OM3-CA = omega-3 carboxylic acids, OO = olive oil

References

    1. Pirillo A, Catapano AL. Omega-3 polyunsaturated fatty acids in the treatment of hypertriglyceridaemia. Int J Cardiol. 2013;170(2 Suppl 1):S16–S20. doi: 10.1016/j.ijcard.2013.06.040.
    1. Kataoka Y, Uno K, Puri R, Nicholls SJ. Epanova® and hypertriglyceridemia: pharmacological mechanisms and clinical efficacy. Future Cardiol. 2013;9:177–186. doi: 10.2217/fca.13.4.
    1. Kastelein JJP, Maki KC, Susekov A, Ezhov M, Nordestgaard BG, Machielse BN, Kling D, Davidson MH. Omega-3 free fatty acids for the treatment of severe hypertriglyceridemia: The EpanoVa fOr Lowering Very high triglycerides (EVOLVE) trial. J Clin Lipidol. 2014;8:94–106. doi: 10.1016/j.jacl.2013.10.003.
    1. Maki KC, Orloff DG, Nicholls SJ, Dunbar RL, Roth EM, Curcio D, Johnson J, Kling D, Davidson MH. A highly bioavailable omega-3 free-fatty acid formulation improves the cardiovascular risk profile in high-risk, statin-treated patients with residual hypertriglyceridemia (the ESPRIT trial) Clin Ther. 2013;35:1400–1411. doi: 10.1016/j.clinthera.2013.07.420.
    1. Maki KC, McKenney JM, Reeves MS, Lubin BC, Dicklin MR. Effects of adding prescription omega-3 acid ethyl esters to simvastatin (20 mg/day) on lipids and lipoprotein particles in men and women with mixed dyslipidemia. Am J Cardiol. 2008;102:429–433. doi: 10.1016/j.amjcard.2008.03.078.
    1. Davidson MH, Maki KC, Bays H, Carter R, Ballantyne CM. Effects of prescription omega-3-acid ethyl esters on lipoprotein particle concentrations, apolipoproteins AI and CIII, and lipoprotein-associated phospholipase A2 mass in statin-treated subjects with hypertriglyceridemia. J Clin Lipidol. 2009;5:332–340. doi: 10.1016/j.jacl.2009.08.001.
    1. Maki KC, Bays HE, Dicklin MR, Johnson SL, Shabbout M. Effects of prescription omega-3-acid ethyl esters, coadministered with atorvastatin, on circulating levels of lipoprotein particles, apolipoprotein CIII and lipoprotein-associated phospholipase A2 mass in men and women with mixed dyslipidemia. J Clin Lipidol. 2011;5:483–492. doi: 10.1016/j.jacl.2011.09.001.
    1. Ooi EM, Barrett PH, Chan DC, Watts GF. Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. Clin Sci (Lond) 2008;114:661–624. doi: 10.1042/CS20070308.
    1. Kawakami A, Yoshida M. Apolipoprotein CIII links dyslipidemia with atherosclerosis. J Atheroscler Thromb. 2009;16:6–11. doi: 10.5551/jat.E607.
    1. Ginsberg HN, Brown WV. Apolipoprotein CIII. 42 years old and even more interesting. Arterioscler Thromb Vasc Biol. 2011;31:471–3.
    1. Mendivil CO, Rimm EB, Furtado J, Chiuve SE, Sacks FM. Low-density lipoproteins containing apolipoprotein C-III and the risk of coronary heart disease. Circulation. 2011;124:2065–2072. doi: 10.1161/CIRCULATIONAHA.111.056986.
    1. Sacks FM, Alaupovic P, Moye LA, Cole TG, Sussex B, Stampfer MJ, Pfeffer MA, Braunwald E. VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial. Circulation. 2000;102:1886–1892. doi: 10.1161/01.CIR.102.16.1886.
    1. Pollin T, Damcott CM, Shen H, Ott SH, Shelton J, Horenstein RB, Post W, McLenithan JC, Bielak LF, Peyser PA, Mitchell BD, Miller M, O’Connell JR, Shuldiner AR. A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science. 2008;322:1702–1705. doi: 10.1126/science.1161524.
    1. Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybaerg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371:32–42. doi: 10.1056/NEJMoa1308027.
    1. The TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371:22–31. doi: 10.1056/NEJMoa1307095.
    1. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003;107:363–369. doi: 10.1161/01.CIR.0000053730.47739.3C.
    1. Harris WS, Ginsberg HN, Arunakul N, Shacter NS, Windsor SL, Adams M, Berglund L, Osmundsen J. Safety and efficacy of Omacor in severe hypertriglyceridemia. J Cardiovasc Risk. 1997;4:385–391. doi: 10.1097/00043798-199710000-00011.
    1. Harris WS, Miller M, Tighe AP, Davidson MH, Schaefer EJ. Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis. 2008;197:12–24. doi: 10.1016/j.atherosclerosis.2007.11.008.
    1. Pownall HJ, Brauchi D, Kilinc C, Osmundsen K, Pao Q, Payton-Ross C, Gotto AM, Jr, Ballantyne CM. Correlation of serum triglyceride and its reduction by omega-3 fatty acids with lipid transfer activity and the neutral lipid compositions of high-density and low-density lipoproteins. Atherosclerosis. 1999;143:285–297. doi: 10.1016/S0021-9150(98)00301-3.
    1. Wei MY, Jacobson TA. Effects of eicosapentaenoic acid versus docosahexaenoic acid on serum lipids; a systematic review and meta-analysis. Curr Atheroscler Rep. 2011;13:474–483. doi: 10.1007/s11883-011-0210-3.
    1. Jacobson TA, Glickstein SB, Rowe JD, Soni PN. Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: a review. J Clin Lipidol. 2012;6:5–18. doi: 10.1016/j.jacl.2011.10.018.
    1. Packard CJ. Triacylglycerol-rich lipoproteins and the generation of small, dense low-density lipoprotein. Biochem Soc Trans. 2003;31:1066–1069. doi: 10.1042/bst0311066.
    1. Davidson MH, Bays HE, Stein E, Maki KC, Shalwitz RA, Doyle R. TRIMS Investigators. Effects of fenofibrate on atherogenic dyslipidemia in hypertriglyceridemic subjects. Clin Cardiol. 2006;29:268–273. doi: 10.1002/clc.4960290609.
    1. Morgado N, Rigotti A, Valenzuela A. Comparative effect of fish oil feeding and other dietary fatty acids on plasma lipoproteins, biliary lipids, and hepatic expression of proteins involved in reverse cholesterol transport in the rat. Ann Nutr Metab. 2005;49:397–406. doi: 10.1159/000088935.
    1. Nishimoto T, Pellizzon MA, Aihara M, Stylianou IM, Billheimer JT, Rothblat G, Rader DJ. Fish oil promotes macrophage reverse cholesterol transport in mice. Arterioscler Thromb Vasc Biol. 2009;29:1502–1508. doi: 10.1161/ATVBAHA.109.187252.
    1. Burillo E, Mateo-Gallego R, Cenarro A, Fiddyment S, Bea AM, Jorge I, Vázquez J, Civeira F. Beneficial effects of omega-3 fatty acids in the proteome of high-density lipoprotein proteome. Lipids Health Dis. 2012;11:116. doi: 10.1186/1476-511X-11-116.
    1. Khera AV, Cuchel M, de la Llera-Moya M, Rodriques A, Burke MF, Jafri K, French BC, Phillips JA, Mucksavage ML, Wilensky RL, Mohler ER, Rothblat GH, Rader DJ. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364:127–135. doi: 10.1056/NEJMoa1001689.
    1. Anderson JL. Lipoprotein-associated phospholipase A2: an independent predictor of coronary artery disease events in primary and secondary prevention. Am J Cardiol. 2008;101:23F–33F. doi: 10.1016/j.amjcard.2008.04.015.
    1. Lp-PLA2 Studies Collaboration. Thompson A, Gao P, Orfei L, Watson S, Di Angelantonio E, Kaptoge S, Ballantyne C, Cannon CP, Criqui M, Cushman M, Hofman A, Packard C, Thompson SG, Collins R, Danesh J. Lipoprotein-associated phospholipase A2 and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet. 2010;375:1536–1544. doi: 10.1016/S0140-6736(10)60319-4.
    1. Kleber ME, Wolfert RL, De Moissl GD, Grammer TB, Dietz S, Winkelmann BR, Boehn BO, Marz W. Lipoprotein associated phospholipase A2 concentration predicts total and cardiovascular mortality independently of established risk factors (The Ludwigshafen Risk and Cardiovascular Health Study) Clin Lab. 2011;57:659–667.
    1. Ginsberg HN, Le NA, Goldberg IJ, Gibson JC, Rubinstein A, Wang-Iverson P, Norum R, Brown WV. Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI. Evidence that apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo. J Clin Invest. 1986;78:1287–1295. doi: 10.1172/JCI112713.
    1. Ilzuka K, Horikawa Y. ChREBP. A glucose-activated transcription factor involved in the development of metabolic syndrome. Endocr J. 2008;55:617–624. doi: 10.1507/endocrj.K07E-110.
    1. Sparks JD, Dong HH. FoxO1 and hepatic lipid metabolism. Curr Opin Lipidol. 2009;20:217–226. doi: 10.1097/MOL.0b013e32832b3f4c.
    1. Chen YJ, Chen CC, Li TK, Wang PH, Liu LR, Chang FY, Wang YC, Yu YH, Lin SP, Mersmann HJ, Ding ST. Docosahexaenoic acid suppresses the expression of FoxO and its target genes. J Nutr Biochem. 2012;23:1609–1616. doi: 10.1016/j.jnutbio.2011.11.003.
    1. Park Y, Harris WS. Omega-3 fatty acid supplementation accelerates chylomicrons triglyceride clearance. J Lipid Res. 2003;44:455–463. doi: 10.1194/jlr.M200282-JLR200.
    1. Davidson MH. Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am J Cardiol. 2006;98:27i–33i. doi: 10.1016/j.amjcard.2005.12.024.
    1. Harris WS, Bulchandani D. Why do omega-3 fatty acids lower serum triglycerides? Curr Opin Lipidol. 2006;17:387–393. doi: 10.1097/01.mol.0000236363.63840.16.
    1. Davidson MH, Rooney MW, Drucker J, Eugene Griffin H, Oosman S, Beckert M, LCP-AtorFen Investigators Efficacy and tolerability of atorvastatin/fenofibrate fixed-dose combination tablet compared with atorvastatin and fenofibrate monotherapies in patients with dyslipidemia: a 12-week, multicenter, double-blind, randomized, parallel-group study. Clin Ther. 2009;31:2824–2838. doi: 10.1016/j.clinthera.2009.12.007.
    1. Gundry SR, Epstein J. Niacin dramatically raises the endothelial inflammatory marker Lp-PLA2: the reason the AIM-HIGH trial failed despite improvements in HDL and triglycerides. Circulation. 2011;124:A16318.
    1. Toth PP, McCullough PA, Wegner MS, Colley KJ. Lipoprotein-associated phospholipase A2: role in atherosclerosis and utility as a cardiovascular biomarker. Exp Rev Cardiovasc Ther. 2010;8:425–438. doi: 10.1586/erc.10.18.
    1. O’Donoghue ML, Braunwald E, White HD, Steen DP, Lukas MA, Tarka E, Steg PG, Hochman JS, Bode C, Maggioni AP, Im K, Shannon JB, Davies RY, Murphy SA, Crugname SE, Wiviott SD, Bonaca MP, Watson DF, Weaver WD, Serruys PW, Cannon CP, SOLID-TIMI 52 Investigators Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial. JAMA. 2014;312:1006–1015. doi: 10.1001/jama.2014.11061.
    1. STABILITY Investigators. White HD, Held C, Stewart R, Tarka E, Brown R, Davies RY, Budaj A, Harrington RA, Steg PG, Ardissino D, Armstrong PW, Avezum A. Darapladib for preventing ischemic events in stable coronary heart disease. N Engl J Med. 2014;370:1702–1711. doi: 10.1056/NEJMoa1315878.
    1. Ridker PM, Bassuk SS, Toth PP. C-reactive protein and risk of cardiovascular disease: evidence and clinical application. Curr Atheroscler Rep. 2003;5:341–349. doi: 10.1007/s11883-003-0004-3.
    1. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–3421.
    1. Otvos JD, Collins D, Freedman DS, Shalaurova I, Schaefer EJ, McNamara JR, Bloomfield HE, Robins SJ. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation. 2006;113:1556–1563. doi: 10.1161/CIRCULATIONAHA.105.565135.
    1. Ridker PM, MacFayden JG, Wolfert RL, Koenig W. Relationship of lipoprotein-associated phospholipase A2 mass and activity with incident vascular events among primary prevention patients allocated to placebo or to statin therapy: an analysis from the JUPITER trial. Clin Chem. 2012;58:877–886. doi: 10.1373/clinchem.2011.180281.
    1. Jones PH, Davidson MH, Stein EA, Bays HE, McKenney JM, Miller E, Cain VA, Blasetto JW, STELLAR Study Group Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR trial) Am J Cardiol. 2003;92:152–160. doi: 10.1016/S0002-9149(03)00530-7.
    1. Grundy SM, Cleeman JI, Merz CN, Brewer HB, Jr, Clark LT, Hunninghake DB, Pasternak RC, Smith SC, Jr, Stone NJ. Coordinating Committee of the National Cholesterol Education Program. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004;110:227–239. doi: 10.1161/01.CIR.0000133317.49796.0E.

Source: PubMed

3
Tilaa