Debating Pros and Cons of Total Neoadjuvant Therapy in Rectal Cancer

Francesco Sclafani, Claudia Corrò, Thibaud Koessler, Francesco Sclafani, Claudia Corrò, Thibaud Koessler

Abstract

Recently, two large, randomised phase III clinical trials of total neoadjuvant therapy (TNT) in locally advanced rectal cancer were published (RAPIDO and PRODIGE 23). These two trials compared short-course radiotherapy (SCRT) followed by chemotherapy with standard chemoradiotherapy (CRT) and chemotherapy followed by CRT with standard CRT, respectively. They showed improvement in some of the outcomes such as distant recurrence and pathological complete response (pCR). No improvement, however, was observed in local disease control or the de-escalation of surgical procedures. Although it seems lawful to integrate TNT within the treatment algorithm of localised stage II and III rectal cancer, many questions remain unanswered, including which are the optimal criteria to identify patients who are most likely to benefit from this intensive treatment. Instead of providing a sterile summary of trial results, we put these in perspective in a pros and cons manner. Moreover, we discuss some biological aspects of rectal cancer, which may provide some insights into the current decision-making process, and represent the basis for the future development of alternative, more effective treatment strategies.

Keywords: PRODIGE-23; RAPIDO; chemoradiotherapy; consolidation chemotherapy; induction chemotherapy; rectal cancer; short-course radiotherapy; total neoadjuvant therapy.

Conflict of interest statement

T.K. reports receiving consulting fees from Bayer, Lilly, Merck, MSD, Roche, Boehringer Ingelheim, Vifor, BMS and a leadership role as Co-Chair of the EORTC Colon Cancer Task Force. F.S. reports receiving consulting fees from Amal Therapeutics, Bayer; travel expenses from Bayer, Lilly; institutional research funding from Amgen, AstraZeneca, Bayer, BMS, Roche, Sanofi; and a leadership role as Co-Chair of the EORTC Colon Cancer Task Force. C.C. has no other personal or financial conflicts of interest to disclose. The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Study design of the PRODIGE 23 and RAPIDO trials.

References

    1. Van Gijn W., Marijnen C.A., Nagtegaal I.D., Kranenbarg E.M.-K., Putter H., Wiggers T., Rutten H.J.T., Påhlman L., Glimelius B., van de Velde C.J.H., et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol. 2011;12:575–582. doi: 10.1016/S1470-2045(11)70097-3.
    1. Sauer R., Liersch T., Merkel S., Fietkau R., Hohenberger W., Hess C., Becker H., Raab H.-R., Villanueva M.-T., Witzigmann H., et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: Results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow- up of 11 years. J. Clin. Oncol. 2012;30:1926–1933. doi: 10.1200/JCO.2011.40.1836.
    1. Erlandsson J., Holm T., Pettersson D., Berglund Å., Cedermark B., Radu C., Johansson H., Machado M., Hjern F., Hallböök O., et al. Optimal fractionation of preoperative radiotherapy and timing to surgery for rectal cancer (Stockholm III): A multicentre, randomised, non-blinded, phase 3, noninferiority trial. Lancet Oncol. 2017;18:336–346. doi: 10.1016/S1470-2045(17)30086-4.
    1. Glynne-Jones R., Wyrwicz L., Tiret E., Brown G., Rödel C., Cervantes A., Arnold D. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017;28:iv22–iv40. doi: 10.1093/annonc/mdx224.
    1. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Rectal Cancer Version 2.2021. [(accessed on 10 September 2021)]. Available online: .
    1. Sclafani F., Brown G., Cunningham D., Wotherspoon A., Tait D., Peckitt C., Evans J., Yu S., Sena Teixeira Mendes L., Tabernero J., et al. PAN-EX: A pooled analysis of two trials of neoadjuvant chemotherapy followed by chemoradiotherapy in MRI-defined, locally advanced rectal cancer. Ann. Oncol. 2016;27:1557–1565. doi: 10.1093/annonc/mdw215.
    1. Sclafani F., Kalaitzaki E., Cunningham D., Tait D., Brown G., Chau I. Neoadjuvant rectal score: Run with the hare and hunt with the hounds. Ann. Oncol. 2018;29:2261–2262. doi: 10.1093/annonc/mdy403.
    1. Bahadoer R.R., Dijkstra E.A., van Etten B., Marijnen C.A.M., Putter H., Kranenbarg E.M.-K., Roodvoets A.G.H., Nagtegaal I.D., Beets-Tan R.G.H., Blomquist L.K., et al. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): A randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:29–42. doi: 10.1016/S1470-2045(20)30555-6. Erratum in 2021, 22, e42.
    1. Conroy T., Bosset J.-F., Etienne P.-L., Rio E., François É., Mesgouez-Nebout N., Vendrely V., Artignan X., Bouché O., Gargot D., et al. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:702–715. doi: 10.1016/S1470-2045(21)00079-6.
    1. Rödel C., Graeven U., Fietkau R., Hohenberger W., Hothorn T., Arnold D., Hofheinz R.-D., Ghadimi M., Wolff H.A., Lang-Welzenbach M., et al. Oxaliplatin added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemotherapy of locally advanced rectal cancer (the German CAO/ARO/AIO-04 study): Final results of the multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2015;16:979–989. doi: 10.1016/S1470-2045(15)00159-X.
    1. Gérard J.-P., Azria D., Gourgou-Bourgade S., Martel-Lafay I., Hennequin C., Etienne P.-L., Vendrely V., François E., de La Roche G., Bouché O., et al. Clinical outcome of the ACCORD 12/0405 PRODIGE 2 randomized trial in rectal cancer. J. Clin. Oncol. 2012;30:4558–4565. doi: 10.1200/JCO.2012.42.8771.
    1. Allegra C.J., Yothers G., O’Connell M.J., Beart R.W., Wozniak T.F., Pitot H.C., Shields A.F., Landry J.C., Ryan D.P., Arora A., et al. Neoadjuvant 5-FU or Capecitabine Plus Radiation With or Without Oxaliplatin in Rectal Cancer Patients: A Phase III Randomized Clinical Trial. J. Natl. Cancer Inst. 2015;107:248. doi: 10.1093/jnci/djv248. Erratum in 2016, 108; Corrigendum in 2018, 110, 794.
    1. Aschele C., Lonardi S., Cionini L., Pinto C., Cordio S.S., Rosati G., Sartore Bianchi A., Tagliagambe A., Frisinghelli M., Zagonel V., et al. Final results of STAR-01: A randomized phase III trial comparing preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer. J. Clin. Oncol. 2016;34:3521. doi: 10.1200/JCO.2016.34.15_suppl.3521.
    1. Schmoll H.-J., Stein A., Van Cutsem E., Price T., Hofheinz R.D., Nordlinger B., Daisne J.-F., Janssens J., Brenner B., Reinel H., et al. Pre- and Postoperative Capecitabine Without or With Oxaliplatin in Locally Advanced Rectal Cancer: PETACC 6 Trial by EORTC GITCG and ROG, AIO, AGITG, BGDO, and FFCD. J. Clin. Oncol. 2021;39:17–29. doi: 10.1200/JCO.20.01740.
    1. Deng Y., Chi P., Lan P., Wang L., Chen W., Cui L., Chen D., Cao J., Wei H., Peng X., et al. Neoadjuvant modified FOLFOX6 with or without radiation versus fluorouracil plus radiation for locally advanced rectal cancer: Final results of the Chinese FOWARC trial. J. Clin. Oncol. 2019;37:3223–3233. doi: 10.1200/JCO.18.02309.
    1. Valentini V., van Stiphout R.G., Lammering G., Gambacorta M.A., Barba M.C., Bebenek M., Bonnetain F., Bosset J.F., Bujko K., Cionini L., et al. Selection of appropriate end-points (pCR vs. 2yDFS) for tailoring treatments with prediction models in locally advanced rectal cancer. Radiother. Oncol. 2015;114:302–309. doi: 10.1016/j.radonc.2015.02.001.
    1. Glynne-Jones R., Anyamene N., Moran B., Harrison M. Neoadjuvant chemotherapy in MRI-staged high-risk rectal cancer in addition to or as an alternative to preoperative chemoradiation? Ann. Oncol. 2012;23:2517–2526. doi: 10.1093/annonc/mds010.
    1. André T., Boni C., Navarro M., Tabernero J., Hickish T., Topham C., Bonetti A., Clingan P., Bridgewater J., Rivera F., et al. Improved Overall Survival With Oxaliplatin, Fluorouracil, and Leucovorin As Adjuvant Treatment in Stage II or III Colon Cancer in the MOSAIC Trial. J. Clin. Oncol. 2009;27:3109–3116. doi: 10.1200/JCO.2008.20.6771.
    1. Yothers G., O’Connell M.J., Allegra C.J., Kuebler J.P., Colangelo L.H., Petrelli N.J., Wolmark N. Oxaliplatin as adjuvant therapy for colon cancer: Updated results of NSABP C-07 trial, including survival and subset analyses. J. Clin. Oncol. 2011;29:3768–3774. doi: 10.1200/JCO.2011.36.4539.
    1. Nordlinger B., Sorbye H., Glimelius B., Poston G.J., Schlag P.M., Rougier P., Bechstein W.O., Primrose J.N., Walpole E.T., Finch-Jones M., et al. Perioperative FOLFOX4 chemotherapy and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC 40983): Long-term results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2013;14:1208–1215. doi: 10.1016/S1470-2045(13)70447-9.
    1. Sainato A., Cernusco Luna Nunzia V., Valentini V., De Paoli A., Maurizi E.R., Lupattelli M., Aristei C., Vidali C., Conti M., Galardi A., et al. No benefit of adjuvant Fluorouracil Leucovorin chemotherapy after neoadjuvant chemoradiotherapy in locally advanced cancer of the rectum (LARC): Long term results of a randomized trial (I-CNR-RT) Radiother. Oncol. 2014;113:223–229. doi: 10.1016/j.radonc.2014.10.006.
    1. Glynne-Jones R., Counsell N., Quirke P., Mortensen N., Maraveyas A., Meadows H.M., Ledermann J., Sebag-Montefiore D. Chronicle: Results of a randomised phase III trial in locally advanced rectal cancer after neoadjuvant chemoradiation randomising postoperative adjuvant capecitabine plus oxaliplatin (XELOX) versus control. Ann. Oncol. 2014;25:1356–1362. doi: 10.1093/annonc/mdu147.
    1. Bosset J.-F., Calais G., Mineur L., Maingon P., Stojanovic-Rundic S., Bensadoun R.-J., Bardet E., Beny A., Ollier J.-C., Bolla M., et al. Fluorouracil-based adjuvant chemotherapy after preoperative chemoradiotherapy in rectal cancer: Long-term results of the EORTC 22921 randomised study. Lancet Oncol. 2014;15:184–190. doi: 10.1016/S1470-2045(13)70599-0.
    1. Breugom A.J., van Gijn W., Muller E.W., Berglund Å., van den Broek C.B.M., Fokstuen T., Gelderblom H., Kapiteijn E., Leer J.W.H., Marijnen C.A.M., et al. Adjuvant chemotherapy for rectal cancer patients treated with preoperative (chemo)radiotherapy and total mesorectal excision: A Dutch Colorectal Cancer Group (DCCG) randomized phase III trial. Ann. Oncol. 2015;26:696–701. doi: 10.1093/annonc/mdu560.
    1. Breugom A.J., Swets M., Bosset J.-F., Collette L., Sainato A., Cionini L., Glynne-Jones R., Counsell N., Bastiaannet E., van den Broek C.B.M., et al. Adjuvant chemotherapy after preoperative (chemo)radiotherapy and surgery for patients with rectal cancer: A systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015;16:200–207. doi: 10.1016/S1470-2045(14)71199-4.
    1. Fernández-Martos C., Pericay C., Aparicio J., Salud A., Safont M., Massuti B., Vera R., Escudero P., Maurel J., Marcuello E., et al. Phase II, randomized study of concomitant chemoradiotherapy followed by surgery and adjuvant capecitabine plus oxaliplatin (CAPOX) compared with induction CAPOX followed by concomitant chemoradiotherapy and surgery in magnetic resonance imaging—defined, locally advanced rectal cancer: Grupo cáncer de recto 3 study. J. Clin. Oncol. 2010;28:859–865.
    1. van der Valk M.J.M., Hilling D.E., Bastiaannet E., Meershoek-Klein Kranenbarg E., Beets G.L., Figueiredo N.L., Habr-Gama A., Perez R.O., Renehan A.G., van de Velde C.J.H., et al. Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): An international multicentre registry study. Lancet. 2018;391:2537–2545.
    1. Garcia-Aguilar J., Patil S., Kim J.K., Yuval J.B., Thompson H., Verheij F., Lee M., Saltz L.B., on behalf of the OPRA Consortium Preliminary results of the organ preservation of rectal adenocarcinoma (OPRA) trial. J. Clin. Oncol. 2020;38:4008. doi: 10.1200/JCO.2020.38.15_suppl.4008.
    1. Marijnen C.A., van de Velde C.J., Putter H., van den Brink M., Maas C.P., Martijn H., Rutten H.J., Wiggers T., Kranenbarg E.K., Leer J.-W.H., et al. Impact of short-term preoperative radiotherapy on health-related quality of life and sexual functioning in primary rectal cancer: Report of a multicenter randomized trial. J. Clin. Oncol. 2005;23:1847–1858. doi: 10.1200/JCO.2005.05.256.
    1. Peeters K.C., van de Velde C.J., Leer J.W., Martijn H., Junggeburt J.M., Kranenbarg E.K., Steup W.H., Wiggers T., Rutten H.J., Marijnen C.A. Late side effects of short-course preoperative radiotherapy combined with total mesorectal excision for rectal cancer: Increased bowel dysfunction in irradiated patients—a Dutch Colorectal Cancer Group Study. J. Clin. Oncol. 2005;23:6199–6206. doi: 10.1200/JCO.2005.14.779.
    1. Birgisson H., Påhlman L., Gunnarsson U., Glimelius B. Adverse effects of preoperative radiation therapy for rectal cancer: Long-term follow-up of the Swedish Rectal Cancer Trial. J. Clin. Oncol. 2005;23:8697–8705. doi: 10.1200/JCO.2005.02.9017.
    1. Birgisson H., Påhlman L., Gunnarsson U., Glimelius B. Occurrence of second cancers in patients treated with radiotherapy for rectal cancer. J. Clin. Oncol. 2005;23:6126–6131. doi: 10.1200/JCO.2005.02.543.
    1. Brændengen M., Tveit K.M., Bruheim K., Cvancarova M., Berglund Å., Glimelius B. Late patient-reported toxicity after preoperative radiotherapy or chemoradiotherapy in nonresectable rectal cancer: Results from a randomized Phase III study. Int. J. Radiat. Oncol. Biol. Phys. 2011;81:1017–1024. doi: 10.1016/j.ijrobp.2010.07.007.
    1. Deng Y., Chi P., Lan P., Wang L., Chen W., Cui L., Chen D., Cao J., Wei H., Peng X., et al. Modified FOLFOX6 with or without radiation versus fluorouracil and leucovorin with radiation in neoadjuvant treatment of locally advanced rectal cancer: Initial results of the Chinese FOWARC multicenter, open-label, randomized three-arm phase III trial. J. Clin. Oncol. 2016;34:3300–3307. doi: 10.1200/JCO.2016.66.6198.
    1. PROSPECT: Chemotherapy Alone or Chemotherapy Plus Radiation Therapy in Treating Patients With Locally Advanced Rectal Cancer Undergoing Surgery. [(accessed on 22 September 2021)]; Available online: .
    1. Giunta E.F., Bregni G., Pretta A., Deleporte A., Liberale G., Bali A.M., Moretti L., Troiani T., Ciardiello F., Hendlisz A., et al. Total neoadjuvant therapy for rectal cancer: Making sense of the results from the RAPIDO and PRODIGE 23 trials. Cancer Treat. Rev. 2021;96:102177. doi: 10.1016/j.ctrv.2021.102177.
    1. Bujko K., Wyrwicz L., Rutkowski A., Malinowska M., Pietrzak L., Kryński J., Michalski W., Olędzki J., Kuśnierz J., Zając L., et al. Long-course oxaliplatin-based preoperative chemoradiation versus 5 × 5 Gy and consolidation chemotherapy for cT4 or fixed cT3 rectal cancer: Results of a randomized phase III study. Ann. Oncol. 2016;27:834–842. doi: 10.1093/annonc/mdw062.
    1. Ciseł B., Pietrzak L., Michalski W., Wyrwicz L., Rutkowski A., Kosakowska E., Cencelewicz A., Spałek M., Polkowski W., Jankiewicz M., et al. Long-course preoperative chemoradiation versus 5 × 5 Gy and consolidation chemotherapy for clinical T4 and fixed clinical T3 rectal cancer: Long-term results of the randomized Polish II study. Ann. Oncol. 2019;30:1298–1303. doi: 10.1093/annonc/mdz186.
    1. van der Valk M.J.M., Marijnen C.A.M., van Etten B., Dijkstra E.A., Hilling D.E., Meershoek-Klein Kranenbarg E., Putter H., Roodvoets A.G.H., Bahadoer R.R., Fokstuen T., et al. Compliance and tolerability of short-course radiotherapy followed by preoperative chemotherapy and surgery for high-risk rectal cancer—Results of the international randomized RAPIDO-trial. Radiother. Oncol. 2020;147:75–83. doi: 10.1016/j.radonc.2020.03.011. Erratum in 2020, 147, e1.
    1. Harrison J.D., Solomon M.J., Young J.M., Meagher A., Butow P., Salkeld G., Hruby G., Clarke S. Patient and physician preferences for surgical and adjuvant treatment options for rectal cancer. Arch. Surg. 2008;143:389–394. doi: 10.1001/archsurg.143.4.389.
    1. van der Valk M.J.M., van der Sande M.E., Toebes R.E., Breukink S.O., Bröker M.E.E., Doornebosch P.G., Maliko N., Neijenhuis P.A., Marinelli A.W.K.S., Peters F.P., et al. Importance of patient reported and clinical outcomes for patients with locally advanced rectal cancer and their treating physicians. Do clinicians know what patients want? Eur. J. Surg. Oncol. 2020;46:1634–1641. doi: 10.1016/j.ejso.2020.04.014.
    1. Giraldo N.A., Sanchez-Salas R., Peske J.D., Vano Y., Becht E., Petitprez F., Validire P., Ingels A., Cathelineau X., Fridman W.H., et al. The clinical role of the TME in solid cancer. Br. J. Cancer. 2019;120:45–53. doi: 10.1038/s41416-018-0327-z.
    1. Hirata E., Sahai E. Tumor Microenvironment and Differential Responses to Therapy. Cold Spring Harb. Perspect. Med. 2017;7:a026781. doi: 10.1101/cshperspect.a026781.
    1. van den Ende T., van den Boorn H.G., Hoonhout N.M., van Etten-Jamaludin F.S., Meijer S.L., Derks S., de Gruijl T.D., Bijlsma M.F., van Oijen M.G.H., van Laarhoven H.W.M. Priming the tumor immune microenvironment with chemo(radio)therapy: A systematic review across tumor types. Biochim. Biophys. Acta (BBA) Rev. Cancer. 2020;1874:188386. doi: 10.1016/j.bbcan.2020.188386.
    1. Arango D., Wilson A.J., Shi Q., Corner G.A., Arañes M.J., Nicholas C., Lesser M., Mariadason J.M., Augenlicht L.H. Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells. Br. J. Cancer. 2004;91:1931–1946. doi: 10.1038/sj.bjc.6602215.
    1. Longley D.B., Harkin D.P., Johnston P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer. 2003;3:330–338. doi: 10.1038/nrc1074.
    1. Ruffell B., Coussens L.M. Macrophages and therapeutic resistance in cancer. Cancer Cell. 2015;27:462–472. doi: 10.1016/j.ccell.2015.02.015.
    1. Lhuillier C., Rudqvist N.-P., Elemento O., Formenti S.C., Demaria S. Radiation therapy and anti-tumor immunity: Exposing immunogenic mutations to the immune system. Genome Med. 2019;11:40. doi: 10.1186/s13073-019-0653-7.
    1. Wang Y., Deng W., Li N., Neri S., Sharma A., Jiang W., Lin S.H. Combining Immunotherapy and Radiotherapy for Cancer Treatment: Current Challenges and Future Directions. Front. Pharmacol. 2018;9:185. doi: 10.3389/fphar.2018.00185.
    1. Prise K.M., Schettino G., Folkard M., Held K.D. New insights on cell death from radiation exposure. Lancet Oncol. 2005;6:520–528. doi: 10.1016/S1470-2045(05)70246-1.
    1. Yasuda K., Nirei T., Sunami E., Nagawa H., Kitayama J. Density of CD4(+) and CD8(+) T lymphocytes in biopsy samples can be a predictor of pathological response to chemoradiotherapy (CRT) for rectal cancer. Radiat. Oncol. 2011;6:49. doi: 10.1186/1748-717X-6-49.
    1. McCoy M.J., Hemmings C., Miller T.J., Austin S.J., Bulsara M.K., Zeps N., Nowak A.K., Lake R.A., Platell C.F. Low stromal Foxp3+ regulatory T-cell density is associated with complete response to neoadjuvant chemoradiotherapy in rectal cancer. Br. J. Cancer. 2015;113:1677–1686. doi: 10.1038/bjc.2015.427.
    1. Zhao Y., Ge X., He J., Cheng Y., Wang Z., Wang J., Sun L. The prognostic value of tumor-infiltrating lymphocytes in colorectal cancer differs by anatomical subsite: A systematic review and meta-analysis. World J. Surg. Oncol. 2019;17:85. doi: 10.1186/s12957-019-1621-9.
    1. Roxburgh C.S., Shia J., Vakiani E., Daniel T., Weiser M.R. Potential immune priming of the tumor microenvironment with FOLFOX chemotherapy in locally advanced rectal cancer. Oncoimmunology. 2018;7:e1435227. doi: 10.1080/2162402X.2018.1435227.
    1. Zhang S., Bai W., Tong X., Bu P., Xu J., Xi Y. Correlation between tumor microenvironment-associated factors and the efficacy and prognosis of neoadjuvant therapy for rectal cancer. Oncol. Lett. 2019;17:1062–1070. doi: 10.3892/ol.2018.9682.
    1. Napolitano M., D’Alterio C., Cardone E., Trotta A.M., Pecori B., Rega D., Pace U., Scala D., Scognamiglio G., Tatangelo F., et al. Peripheral myeloid-derived suppressor and T regulatory PD-1 positive cells predict response to neoadjuvant short-course radiotherapy in rectal cancer patients. Oncotarget. 2015;6:8261–8270. doi: 10.18632/oncotarget.3014.
    1. Lim S.H., Chua W., Cheng C., Descallar J., Ng W., Solomon M., Bokey L., Wong K., Lee M.T., de Souza P., et al. Effect of neoadjuvant chemoradiation on tumor-infiltrating/associated lymphocytes in locally advanced rectal cancers. Anticancer Res. 2014;34:6505–6513.
    1. Shinto E., Hase K., Hashiguchi Y., Sekizawa A., Ueno H., Shikina A., Kajiwara Y., Kobayashi H., Ishiguro M., Yamamoto J. CD8+ and FOXP3+ tumor-infiltrating T cells before and after chemoradiotherapy for rectal cancer. Ann. Surg. Oncol. 2014;21((Suppl. S3)):414–421. doi: 10.1245/s10434-014-3584-y.
    1. Chen C.-C., Wu M.-L., Huang K.-C., Huang I.-P., Chung Y.-L. The Effects of Neoadjuvant Treatment on the Tumor Microenvironment in Rectal Cancer: Implications for Immune Activation and Therapy Response. Clin. Colorectal Cancer. 2020;19:e164–e180. doi: 10.1016/j.clcc.2020.04.002.
    1. Jarosch A., Sommer U., Bogner A., Reissfelder C., Weitz J., Krause M., Folprecht G., Baretton G.B., Aust D.E. Neoadjuvant radiochemotherapy decreases the total amount of tumor infiltrating lymphocytes, but increases the number of CD8+/Granzyme B+ (GrzB) cytotoxic T-cells in rectal cancer. Oncoimmunology. 2018;7:e1393133. doi: 10.1080/2162402X.2017.1393133.
    1. Barnes T.A., Amir E. HYPE or HOPE: The prognostic value of infiltrating immune cells in cancer. Br. J. Cancer. 2017;117:451–460. doi: 10.1038/bjc.2017.220. Erratum in 2018, 118, e5.
    1. Yasui K., Kondou R., Iizuka A., Miyata H., Tanaka E., Ashizawa T., Nagashima T., Ohshima K., Urakami K., Kusuhara M., et al. Effect of preoperative chemoradiotherapy on the immunological status of rectal cancer patients. J. Radiat. Res. 2020;61:766–775. doi: 10.1093/jrr/rraa041.
    1. Chen T.-W., Huang K.C.-Y., Chiang S.-F., Chen W.T.-L., Ke T.-W., Chao K.S.C. Prognostic relevance of programmed cell death-ligand 1 expression and CD8+ TILs in rectal cancer patients before and after neoadjuvant chemoradiotherapy. J. Cancer Res. Clin. Oncol. 2019;145:1043–1053. doi: 10.1007/s00432-019-02874-7.
    1. Huang C.-Y., Chiang S.-F., Ke T.-W., Chen T.-W., Lan Y.-C., You Y.-S., Shiau A.-C., Chen W.T.-L., Chao K.S.C. Cytosolic high-mobility group box protein 1 (HMGB1) and/or PD-1+ TILs in the tumor microenvironment may be contributing prognostic biomarkers for patients with locally advanced rectal cancer who have undergone neoadjuvant chemoradiotherapy. Cancer Immunol. Immunother. 2018;67:551–562. doi: 10.1007/s00262-017-2109-5.
    1. Ngan S.Y., Burmeister B., Fisher R.J., Solomon M., Goldstein D., Joseph D., Ackland S.P., Schache D., McClure B., McLachlan S.-A., et al. Randomized trial of short-course radiotherapy versus long-course chemoradiation comparing rates of local recurrence in patients with T3 rectal cancer: Trans-Tasman Radiation Oncology Group trial 01.04. J. Clin. Oncol. 2012;30:3827–3833. doi: 10.1200/JCO.2012.42.9597.
    1. Kane C., Glynne-Jones R. Should we favour the use of 5 × 5 preoperative radiation in rectal cancer. Cancer Treat. Rev. 2019;81:101908. doi: 10.1016/j.ctrv.2019.101908.
    1. Ling A., Edin S., Wikberg M.L., Öberg Å., Palmqvist R. The intratumoural subsite and relation of CD8+ and FOXP3+ T lymphocytes in colorectal cancer provide important prognostic clues. Br. J. Cancer. 2014;110:2551–2559. doi: 10.1038/bjc.2014.161.
    1. Saito T., Nishikawa H., Wada H., Nagano Y., Sugiyama D., Atarashi K., Maeda Y., Hamaguchi M., Ohkura N., Sato E., et al. Two FOXP3+CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat. Med. 2016;22:679–684. doi: 10.1038/nm.4086.
    1. Koelzer V.H., Canonica K., Dawson H., Sokol L., Karamitopoulou-Diamantis E., Lugli A., Zlobec I. Phenotyping of tumor-associated macrophages in colorectal cancer: Impact on single cell invasion (tumor budding) and clinicopathological outcome. Oncoimmunology. 2016;5:e1106677. doi: 10.1080/2162402X.2015.1106677.
    1. Forssell J., Öberg Å., Henriksson M.L., Stenling R., Jung A., Palmqvist R. High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin. Cancer Res. 2007;13:1472–1479. doi: 10.1158/1078-0432.CCR-06-2073.
    1. Edin S., Wikberg M.L., Dahlin A.M., Rutegård J., Öberg Å., Oldenborg P.-A., Palmqvist R. The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS ONE. 2012;7:e47045.
    1. Kang J.-C., Chen J.-S., Lee C.-H., Chang J.-J., Shieh Y.-S. Intratumoral macrophage counts correlate with tumor progression in colorectal cancer. J. Surg. Oncol. 2010;102:242–248. doi: 10.1002/jso.21617.
    1. Trumpi K., Frenkel N., Peters T., Korthagen N.M., Jongen J.M.J., Raats D., van Grevenstein H., Backes Y., Moons L.M., Laclé M.M., et al. Macrophages induce “budding” in aggressive human colon cancer subtypes by protease-mediated disruption of tight junctions. Oncotarget. 2018;9:19490–19507. doi: 10.18632/oncotarget.24626.
    1. Nagorsen D., Voigt S., Berg E., Stein H., Thiel E., Loddenkemper C. Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: Relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival. J. Transl. Med. 2007;5:62. doi: 10.1186/1479-5876-5-62.
    1. Dadabayev A.R., Sandel M.H., Menon A.G., Morreau H., Melief C.J.M., Offringa R., van der Burg S.H., Janssen-van Rhijn C., Ensink N.G., Tollenaar R.A.E.M., et al. Dendritic cells in colorectal cancer correlate with other tumor-infiltrating immune cells. Cancer Immunol. Immunother. 2004;53:978–986. doi: 10.1007/s00262-004-0548-2.
    1. Sandel M.H., Dadabayev A.R., Menon A.G., Morreau H., Melief C.J.M., Offringa R., van der Burg S.H., Janssen-van Rhijn C.M., Ensink N.G., Tollenaar R.A.E.M., et al. Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: Role of maturation status and intratumoral localization. Clin. Cancer Res. 2005;11:2576–2582. doi: 10.1158/1078-0432.CCR-04-1448.
    1. Berthel A., Zoernig I., Valous N.A., Kahlert C., Klupp F., Ulrich A., Weitz J., Jaeger D., Halama N. Detailed resolution analysis reveals spatial T cell heterogeneity in the invasive margin of colorectal cancer liver metastases associated with improved survival. Oncoimmunology. 2017;6:e1286436. doi: 10.1080/2162402X.2017.1286436.
    1. Gillies R.J., Verduzco D., Gatenby R.A. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat. Rev. Cancer. 2012;12:487–493. doi: 10.1038/nrc3298.
    1. Erler J.T., Cawthorne C.J., Williams K.J., Koritzinsky M., Wouters B.G., Wilson C., Miller C., Demonacos C., Stratford I.J., Dive C. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol. Cell. Biol. 2004;24:2875–2889. doi: 10.1128/MCB.24.7.2875-2889.2004.
    1. Papageorgis P., Cheng K., Ozturk S., Gong Y., Lambert A.W., Abdolmaleky H.M., Zhou J.-R., Thiagalingam S. Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Res. 2011;71:998–1008. doi: 10.1158/0008-5472.CAN-09-3269.
    1. Tentes I.K., Schmidt W.M., Krupitza G., Steger G.G., Mikulits W., Kortsaris A., Mader R.M. Long-term persistence of acquired resistance to 5-fluorouracil in the colon cancer cell line SW620. Exp. Cell Res. 2010;316:3172–3181. doi: 10.1016/j.yexcr.2010.09.003.
    1. Kyula J.N., Van Schaeybroeck S., Doherty J., Fenning C.S., Longley D.B., Johnston P.G. Chemotherapy-induced activation of ADAM-17: A novel mechanism of drug resistance in colorectal cancer. Clin. Cancer Res. 2010;16:3378–3389. doi: 10.1158/1078-0432.CCR-10-0014.
    1. Fokas E., Schlenska-Lange A., Polat B., Klautke G., Grabenbauer G.G., Fietkau R., Kuhnt T., Staib L., Brunner T., Grosu A.L., et al. Chemoradiotherapy Plus Induction or Consolidation Chemotherapy as Total Neoadjuvant Therapy for Patients With Locally Advanced Rectal Cancer: Long-term Results of the CAO/ARO/AIO-12 Randomized Clinical Trial. JAMA Oncol. 2021 doi: 10.1001/jamaoncol.2021.5445.
    1. Bujko K., Nowacki M.P., Nasierowska-Guttmejer A., Michalski W., Bebenek M., Kryj M. Long-term results of a randomized trial comparing preoperative short-course radiotherapy with preoperative conventionally fractionated chemoradiation for rectal cancer. Br. J. Surg. 2006;93:1215–1223. doi: 10.1002/bjs.5506.
    1. Glynne-Jones R., Grainger J., Harrison M., Ostler P., Makris A. Neoadjuvant chemotherapy prior to preoperative chemoradiation or radiation in rectal cancer: Should we be more cautious? Br. J. Cancer. 2006;94:363–371. doi: 10.1038/sj.bjc.6602960.
    1. Riesco-Martinez M.C., Fernandez-Martos C., Gravalos-Castro C., Espinosa-Olarte P., La Salvia A., Robles-Diaz L., Modrego-Sanchez A., Garcia-Carbonero R. Impact of Total Neoadjuvant Therapy vs. Standard Chemoradiotherapy in Locally Advanced Rectal Cancer: A Systematic Review and Meta-Analysis of Randomized Trials. Cancers. 2020;12:3655. doi: 10.3390/cancers12123655.
    1. Kong J.C., Soucisse M., Michael M., Tie J., Ngan S.Y., Leong T., McCormick J., Warrier S.K., Heriot A.G. Total Neoadjuvant Therapy in Locally Advanced Rectal Cancer: A Systematic Review and Metaanalysis of Oncological and Operative Outcomes. Ann. Surg. Oncol. 2021;28:7476–7486. doi: 10.1245/s10434-021-09837-8.

Source: PubMed

3
Tilaa