Rhythm and Music-Based Interventions in Motor Rehabilitation: Current Evidence and Future Perspectives

Thenille Braun Janzen, Yuko Koshimori, Nicole M Richard, Michael H Thaut, Thenille Braun Janzen, Yuko Koshimori, Nicole M Richard, Michael H Thaut

Abstract

Research in basic and clinical neuroscience of music conducted over the past decades has begun to uncover music's high potential as a tool for rehabilitation. Advances in our understanding of how music engages parallel brain networks underpinning sensory and motor processes, arousal, reward, and affective regulation, have laid a sound neuroscientific foundation for the development of theory-driven music interventions that have been systematically tested in clinical settings. Of particular significance in the context of motor rehabilitation is the notion that musical rhythms can entrain movement patterns in patients with movement-related disorders, serving as a continuous time reference that can help regulate movement timing and pace. To date, a significant number of clinical and experimental studies have tested the application of rhythm- and music-based interventions to improve motor functions following central nervous injury and/or degeneration. The goal of this review is to appraise the current state of knowledge on the effectiveness of music and rhythm to modulate movement spatiotemporal patterns and restore motor function. By organizing and providing a critical appraisal of a large body of research, we hope to provide a revised framework for future research on the effectiveness of rhythm- and music-based interventions to restore and (re)train motor function.

Keywords: Neurologic Music Therapy (NMT); Rhythmic Auditory Stimulation; auditory-motor entrainment; gait; movement; music-based interventions; rehabilitation; upper extremities.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Braun Janzen, Koshimori, Richard and Thaut.

References

    1. Acuña S. A., Tyler M. E., Danilov Y. P., Thelen D. G. (2018). Abnormal muscle activation patterns are associated with chronic gait deficits following traumatic brain injury. Gait Posture 62 510–517. 10.1016/j.gaitpost.2018.04.012
    1. Allali G., Annweiler C., Blumen H. M., Callisaya M. L., de Cock A. M., Kressig R. W., et al. (2016). Gait phenotype from mild cognitive impairment to moderate dementia: results from the GOOD initiative. Eur. J. Neurol. 23 527–541. 10.1111/ene.12882
    1. Altenmüller E., James C. (2020). “The impact of music interventions on motor rehabilitation following stroke in elderly,” in Music and the Aging Brain, eds Cuddy L., Belleville S., Mussard A. (Amsterdam: Elsevier; ), 407–432. 10.1016/b978-0-12-817422-7.00016-x
    1. Altenmüller E., Marco-Pallares J., Münte T. F., Schneider S. (2009). Neural reorganization underlies improvement in stroke-induced motor dysfunction by music-supported therapy. Ann. N. Y. Acad. Sci. 1169 395–405. 10.1111/j.1749-6632.2009.04580.x
    1. Altenmüller E., Schlaug G. (2015). Apollo’s gift: new aspects of neurologic music therapy. Prog. Brain Res. 217 237–252. 10.1016/bs.pbr.2014.11.029
    1. Altenmüller E., Stewart L. (2020). Oxford Textbook of Neurorehabilitation. Oxford: Oxford University Press. 10.1093/med/9780198824954.001.0001
    1. Alves-Pinto A., Ehrlich S., Cheng G., Turova V., Blumenstein T., Lampe R. (2017). Effects of short-term piano training on measures of finger tapping, somatosensory perception and motor-related brain activity in patients with cerebral palsy. Neuropsychiatr. Dis. Treat. 13 2705–2718. 10.2147/NDT.S145104
    1. Alves-Pinto A., Emch M., Lampe R. (2021). Effects of Piano Training in Unilateral Cerebral Palsy Using Probabilistic and Deterministic Tractography: a Case Report. Front. Hum. Neurosci. 15:622082. 10.3389/fnhum.2021.622082
    1. Alves-Pinto A., Turova V., Blumenstein T., Lampe R. (2016). The Case for Musical Instrument Training in Cerebral Palsy for Neurorehabilitation. Neural Plast. 2016:1072301. 10.1155/2016/1072301
    1. Alves-Pinto A., Turova V., Blumenstein T., Thienel A., Wohlschläger A., Lampe R. (2015). FMRI assessment of neuroplasticity in youths with neurodevelopmental-associated motor disorders after piano training. Eur. J. Paediatr. Neurol. 19 15–28. 10.1016/j.ejpn.2014.09.002
    1. Amengual J. L., Rojo N., Veciana de las Heras M., Marco-Pallarés J., Grau-Sánchez J., Schneider S., et al. (2013). Sensorimotor Plasticity after Music-Supported Therapy in Chronic Stroke Patients Revealed by Transcranial Magnetic Stimulation. PLoS One 8:e61883. 10.1371/journal.pone.0061883
    1. Androulidakis A. G., Doyle L. M. F., Yarrow K., Litvak V., Gilbertson T. P., Brown P. (2007). Anticipatory changes in beta synchrony in the human corticospinal system and associated improvements in task performance. Eur. J. Neurosci. 25 3758–3765. 10.1111/j.1460-9568.2007.05620.x
    1. Bailey C. A., Corona F., Murgia M., Pili R., Pau M., Côté J. N. (2018). Electromyographical gait characteristics in Parkinson’s disease: effects of combined physical therapy and rhythmic auditory stimulation. Front. Neurol. 9:211. 10.3389/fneur.2018.00211
    1. Balardin J. B., Zimeo Morais G. A., Furucho R. A., Trambaiolli L., Vanzella P., Biazoli C., et al. (2017). Imaging Brain Function with Functional Near-Infrared Spectroscopy in Unconstrained Environments. Front. Hum. Neurosci. 11:258. 10.3389/fnhum.2017.00258
    1. Baram Y., Lenger R. (2012). Gait improvement in patients with cerebral palsy by visual and auditory feedback. Neuromodulation 15 48–52. 10.1111/j.1525-1403.2011.00412.x
    1. Benedetti M. G., Piperno R., Simoncini L., Bonato P., Tonini A., Giannini’ S. (1999). Gait abnormalities in minimally impaired multiple sclerosis patients. Mult. Scler. 5 363–368. 10.1177/135245859900500510
    1. Bengtsson S. L., Ullén F., Henrik Ehrsson H., Hashimoto T., Kito T., Naito E., et al. (2009). Listening to rhythms activates motor and premotor cortices. Cortex 45 62–71. 10.1016/j.cortex.2008.07.002
    1. Blood A. J., Zatorre R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl. Acad. Sci. U. S. A. 98 11818–11823. 10.1073/pnas.191355898
    1. Bouvet C. J., Bardy B. G., Keller P. E., Bella S. D., Nozaradan S., Varlet M. (2020). Accent-induced modulation of neural and movement patterns during spontaneous synchronization to auditory rhythms. J. Cogn. Neurosci. 32 2260–2271. 10.1162/jocn_a_01605
    1. Boyd R. N., Morris M. E., Graham H. K. (2001). Management of upper limb dysfunction in children with cerebral palsy: a systematic review. Eur. J. Neurol. 8 150–166. 10.1046/j.1468-1331.2001.00048.x
    1. Brancatisano O., Baird A., Thompson W. F. (2020). Why is music therapeutic for neurological disorders? The Therapeutic Music Capacities Model. Neurosci. Biobehav. Rev. 112 600–615. 10.1016/j.neubiorev.2020.02.008
    1. Braunlich K., Seger C. A., Jentink K. G., Buard I., Kluger B. M., Thaut M. H. (2019). Rhythmic auditory cues shape neural network recruitment in Parkinson’s disease during repetitive motor behavior. Eur. J. Neurosci. 49 849–858. 10.1111/ejn.14227
    1. Buard I., Dewispelaere W. B., Thaut M., Kluger B. M. (2019b). Preliminary neurophysiological evidence of altered cortical activity and connectivity with neurologic music therapy in Parkinson’s disease. Front. Neurosci. 13:105. 10.3389/fnins.2019.00105
    1. Buard I., Dewispelaere W. B., Teale P., Rojas D. C., Kronberg E., Thaut M. H., et al. (2019a). Auditory entrainment of motor responses in older adults with and without Parkinson’s disease: an MEG study. Neurosci. Lett. 708:134331. 10.1016/j.neulet.2019.134331
    1. Bugos J., Kochar S. (2017). Efficacy of a short-term intense piano training program for cognitive aging: a pilot study. Music. Sci. 21 137–150. 10.1177/1029864917690020
    1. Bugos J. A. (2019). The Effects of Bimanual Coordination in Music Interventions on Executive Functions in Aging Adults. Front. Integr. Neurosci. 13:68. 10.3389/FNINT.2019.00068/BIBTEX
    1. Bugos J. A., Lesiuk T., Nathani S. (2021). Piano training enhances Stroop performance and musical self-efficacy in older adults with Parkinson’s disease. Psychol. Music 49 615–630. 10.1177/0305735619888571
    1. Bugos J. A., Perlstein W. M., McCrae C. S., Brophy T. S., Bedenbaugh P. H. (2007). Individualized piano instruction enhances executive functioning and working memory in older adults. Aging Ment. Health 11 464–471. 10.1080/13607860601086504
    1. Buzsáki G. (2009). Rhythms of the Brain. Oxford: Oxford University Press. 10.1093/acprof:oso/9780195301069.001.0001
    1. Calabrò R. S., Naro A., Filoni S., Pullia M., Billeri L., Tomasello P., et al. (2019). Walking to your right music: a randomized controlled trial on the novel use of treadmill plus music in Parkinson’s disease. J. Neuroeng. Rehabil. 16:68. 10.1186/s12984-019-0533-9
    1. Capato T. T. C., de Vries N. M., Inthout J., Barbosa E. R., Nonnekes J., Bloem B. R. (2020a). Multimodal Balance Training Supported by Rhythmical Auditory Stimuli in Parkinson’s Disease: a Randomized Clinical Trial. J. Parkinsons Dis. 10 333–346. 10.3233/JPD-191752
    1. Capato T. T. C., Nonnekes J., de Vries N. M., IntHout J., Barbosa E. R., Bloem B. R. (2020b). Effects of multimodal balance training supported by rhythmical auditory stimuli in people with advanced stages of Parkinson’s disease: a pilot randomized clinical trial. J. Neurol. Sci. 418:117086. 10.1016/j.jns.2020.117086
    1. Castrillo A., Olmos L. M. G., Rodríguez F., Duarte J. (2016). Gait Disorder in a Cohort of Patients with Mild and Moderate Alzheimer’s Disease. Am. J. Alzheimers Dis.Dement. 31 257–262. 10.1177/1533317515603113
    1. Chang H. Y., Lee Y. Y., Wu R. M., Yang Y. R., Luh J. J. (2019). Effects of rhythmic auditory cueing on stepping in place in patients with Parkinson’s disease. Medicine 98:e17874. 10.1097/MD.0000000000017874
    1. Chatterjee D., Hegde S., Thaut M. (2021). Neural plasticity: the substratum of music-based interventions in neurorehabilitation. NeuroRehabilitation 48 155–166. 10.3233/NRE-208011
    1. Chen J. L. (2018). Music-supported therapy for stroke motor recovery: theoretical and practical considerations. Ann. N. Y. Acad. Sci. 1423 57–65. 10.1111/nyas.13726
    1. Chen J. L., Penhune V. B., Zatorre R. J. (2008a). Listening to musical rhythms recruits motor regions of the brain. Cereb. Cortex 18 2844–2854. 10.1093/cercor/bhn042
    1. Chen J. L., Penhune V. B., Zatorre R. J. (2008b). Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. J. Cogn. Neurosci. 20 226–239. 10.1162/jocn.2008.20018
    1. Chen J. L., Zatorre R. J., Penhune V. B. (2006). Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. NeuroImage 32 1771–1781. 10.1016/j.neuroimage.2006.04.207
    1. Chong H. J., Cho S.-R., Jeong E., Kim S. J. (2013). Finger exercise with keyboard playing in adults with cerebral palsy: a preliminary study. J. Exerc. Rehabil. 9 420–425. 10.12965/jer.130050
    1. Chong H. J., Han S. J., Kim S. J. (2017). Keyboard playing as a hand exercise for patients with subacute stroke. Music Ther. Perspect. 35 144–150. 10.1093/mtp/miw023
    1. Clair A. A., O’Konski M. (2006). The effect of Rhythmic Auditory Stimulation (RAS) on gait characteristics of cadence, velocity, and stride length in persons with late stage dementia. J. Music Ther. 43 154–163. 10.1093/jmt/43.2.154
    1. Cochen De Cock V., Dotov D., Damm L., Lacombe S., Ihalainen P., Picot M. C., et al. (2021). BeatWalk: personalized Music-Based Gait Rehabilitation in Parkinson’s Disease. Front. Psychol. 12:655121. 10.3389/fpsyg.2021.655121
    1. Cochen De Cock V., Dotov D. G., Ihalainen P., Bégel V., Galtier F., Lebrun C., et al. (2018). Rhythmic abilities and musical training in Parkinson’s disease: do they help? Npj Parkinsons Dis. 4:8. 10.1038/s41531-018-0043-7
    1. Cole L. P., Henechowicz T. L., Kang K., Pranjić M., Richard N. M., Tian G. L. J., et al. (2021). Neurologic Music Therapy via Telehealth: a Survey of Clinician Experiences, Trends, and Recommendations During the COVID-19 Pandemic. Front. Neurosci. 15:347. 10.3389/fnins.2021.648489
    1. Comber L., Galvin R., Coote S. (2017). Gait deficits in people with multiple sclerosis: a systematic review and meta-analysis. Gait Posture 51 25–35. 10.1016/j.gaitpost.2016.09.026
    1. Crasta J. E., Thaut M. H., Anderson C. W., Davies P. L., Gavin W. J. (2018). Auditory Priming Improves Neural Synchronization in Auditory-Motor Entrainment. Neuropsychologia 117 102–112. 10.1016/j.neuropsychologia.2018.05.017
    1. Crosby L. D., Wong J. S., Chen J. L., Grahn J., Patterson K. K. (2020). An Initial Investigation of the Responsiveness of Temporal Gait Asymmetry to Rhythmic Auditory Stimulation and the Relationship to Rhythm Ability Following Stroke. Front. Neurol. 11:517028. 10.3389/fneur.2020.517028
    1. Curzel F., Brigadoi S., Cutini S. (2021). fNIRS & e-drum: an ecological approach to monitor hemodynamic and behavioural effects of rhythmic auditory cueing training. Brain Cogn. 151:105753. 10.1016/j.bandc.2021.105753
    1. Dalla Bella S. (2018). Music and movement: towards a translational approach. Neurophysiol. Clin. 48 377–386. 10.1016/J.NEUCLI.2018.10.067
    1. Dalla Bella S., Benoit C.-E., Farrugia N., Keller P. E., Obrig H., Mainka S., et al. (2017). Gait improvement via rhythmic stimulation in Parkinson’s disease is linked to rhythmic skills. Sci. Rep. 7:42005. 10.1038/srep42005
    1. Damm L., Varoqui D., de Cock V. C., Dalla Bella S., Bardy B. (2020). Why do we move to the beat? A multi-scale approach, from physical principles to brain dynamics. Neurosci. Biobehav. Rev. 112 553–584. 10.1016/j.neubiorev.2019.12.024
    1. Degé F., Kerkovius K. (2018). The effects of drumming on working memory in older adults. Ann. N. Y. Acad. Sci. 1423 242–250. 10.1111/nyas.13685
    1. del Olmo M. F., Arias P., Furio M. C., Pozo M. A., Cudeiro J. (2006). Evaluation of the effect of training using auditory stimulation on rhythmic movement in Parkinsonian patients-a combined motor and [18F]-FDG PET study. Parkinson. Relat. Disord. 12 155–164. 10.1016/j.parkreldis.2005.11.002
    1. Doelling K. B., Assaneo M. F., Bevilacqua D., Pesaran B., Poeppel D. (2019). An oscillator model better predicts cortical entrainment to music. Proc. Natl. Acad. Sci. U. S. A. 116 10113–10121. 10.1073/PNAS.1816414116
    1. Doelling K. B., Poeppel D. (2015). Cortical entrainment to music and its modulation by expertise. Proc. Natl. Acad. Sci. U. S. A. 112 E6233–E6242. 10.1073/PNAS.1508431112
    1. Dogruoz Karatekin B., Icagasioglu A. (2021). The effect of therapeutic instrumental music performance method on upper extremity functions in adolescent cerebral palsy. Acta Neurol. Belg. 1:3. 10.1007/s13760-021-01618-0
    1. Efraimidou V., Tsimaras V., Proios M., Christoulas K., Giagazoglou P., Sidiropoulou M., et al. (2016). The effect of a music and movement program on gait, balance and psychological parameters of adults with cerebral palsy. J. Phys. Educ. Sport 16 1357–1364. 10.7752/jpes.2016.04217
    1. Erra C., Mileti I., Germanotta M., Petracca M., Imbimbo I., de Biase A., et al. (2019). Immediate effects of rhythmic auditory stimulation on gait kinematics in Parkinson’s disease ON/OFF medication. Clin. Neurophysiol. 130 1789–1797. 10.1016/j.clinph.2019.07.013
    1. Falk S., Müller T., Dalla Bella S. (2015). Non-verbal sensorimotor timing deficits in children and adolescents who stutter. Front. Psychol. 6:847. 10.3389/fpsyg.2015.00847
    1. Fasano A., Daniele A., Albanese A. (2012). Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation. Lancet Neurol. 11 429–442. 10.1016/S1474-4422(12)70049-2
    1. Fernández-Miranda J. C., Wang Y., Pathak S., Stefaneau L., Verstynen T., Yeh F. C. (2015). Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain. Brain Struct. Funct. 220 1665–1680. 10.1007/s00429-014-0751-7
    1. Ferreri L., Mas-Herrero E., Zatorre R. J., Ripollés P., Gomez-Andres A., Alicart H., et al. (2019). Dopamine modulates the reward experiences elicited by music. Proc. Natl. Acad. Sci. U. S. A. 116 3793–3798. 10.1073/PNAS.1811878116
    1. Fischer P., Chen C. C., Chang Y.-J., Yeh C.-H., Pogosyan A., Herz D. M., et al. (2018). Alternating Modulation of Subthalamic Nucleus Beta Oscillations during Stepping. J. Neurosci. 38 5111–5121. 10.1523/JNEUROSCI.3596-17.2018
    1. Foffani G., Bianchi A. M., Baselli G., Priori A. (2005). Movement-related frequency modulation of beta oscillatory activity in the human subthalamic nucleus. J. Physiol. 568 699–711. 10.1113/jphysiol.2005.089722
    1. Friston K. J., Parr T., de Vries B. (2017). The graphical brain: belief propagation and active inference. Netw. Neurosci. 1 381–414. 10.1162/netn_a_00018
    1. Fujioka T., Dawson D. R., Wright R., Honjo K., Chen J. L., Chen J. J., et al. (2018). The effects of music-supported therapy on motor, cognitive, and psychosocial functions in chronic stroke. Ann. N. Y. Acad. Sci. 1423 264–274. 10.1111/nyas.13706
    1. Fujioka T., Ross B., Trainor L. J. (2015). Beta-Band Oscillations Represent Auditory Beat and Its Metrical Hierarchy in Perception and Imagery. J. Neurosci. 35 15187–15198. 10.1523/JNEUROSCI.2397-15.2015
    1. Fujioka T., Trainor L. J., Large E. W., Ross B. (2009). Beta and gamma rhythms in human auditory cortex during musical beat processing. Ann. N. Y. Acad. Sci. 1169 89–92. 10.1111/j.1749-6632.2009.04779.x
    1. Fujioka T., Trainor L. J., Large E. W., Ross B. (2012a). Internalized Timing of Isochronous Sounds Is Represented in Neuromagnetic Beta Oscillations. J. Neurosci. 32 1791–1802. 10.1523/JNEUROSCI.4107-11.2012
    1. Fujioka T., Ween J. E., Jamali S., Stuss D. T., Ross B. (2012b). Changes in neuromagnetic beta-band oscillation after music-supported stroke rehabilitation. Ann. N. Y. Acad. Sci. 1252 294–304. 10.1111/j.1749-6632.2011.06436.x
    1. Fusar-Poli L., Bieleninik Ł, Brondino N., Chen X. J., Gold C. (2018). The effect of music therapy on cognitive functions in patients with dementia: a systematic review and meta-analysis. Aging Ment. Health 22 1097–1106. 10.1080/13607863.2017.1348474
    1. Galea O. A., Cottrell M. A., Treleaven J. M., O’Leary S. P. (2018). Sensorimotor and Physiological Indicators of Impairment in Mild Traumatic Brain Injury: a Meta-Analysis. Neurorehabil. Neural Repair 32 115–128. 10.1177/1545968318760728
    1. Gatti R., Tettamanti A., Lambiase S., Rossi P., Comola M. (2015). Improving Hand Functional Use in Subjects with Multiple Sclerosis Using a Musical Keyboard: a Randomized Controlled Trial. Physiother. Res. Int. 20 100–107. 10.1002/pri.1600
    1. Ghai S. (2018). Effects of real-time (sonification) and rhythmic auditory stimuli on recovering arm function post stroke: a systematic review and meta-analysis. Front. Neurol. 9:488. 10.3389/fneur.2018.00488
    1. Ghai S., Ghai I. (2018). Effects of rhythmic auditory cueing in gait rehabilitation for multiple sclerosis: a mini systematic review and meta-analysis. Front. Neurol. 9:386. 10.3389/fneur.2018.00386
    1. Ghai S., Ghai I. (2019). Effects of (music-based) rhythmic auditory cueing training on gait and posture post-stroke: a systematic review & dose-response meta-analysis. Sci. Rep. 9:2183. 10.1038/s41598-019-38723-3
    1. Ghai S., Ghai I., Schmitz G., Effenberg A. O. (2018a). Effect of rhythmic auditory cueing on parkinsonian gait: a systematic review and meta-analysis. Sci. Rep. 8:506. 10.1038/s41598-017-16232-5
    1. Ghai S., Ghai I., Effenberg A. O. (2018b). Effect of rhythmic auditory cueing on gait in cerebral palsy: a systematic review and meta-analysis. Neuropsychiatr. Dis. Treat. 14 43–59. 10.2147/NDT.S148053
    1. Ghai S., Ghai I., Effenberg A. O. (2018c). Effect of rhythmic auditory cueing on aging gait: a systematic review and meta-analysis. Aging Dis. 9 901–923. 10.14336/AD.2017.1031
    1. Ghai S., Maso F. D., Ogourtsova T., Porxas A. X., Villeneuve M., Penhune V., et al. (2021). Neurophysiological changes induced by music-supported therapy for recovering upper extremity function after stroke: a case series. Brain Sci. 11:666. 10.3390/brainsci11050666
    1. Gilbertson T., Lalo E., Doyle L., di Lazzaro V., Cioni B., Brown P. (2005). Existing motor state is favored at the expense of new movement during 13-35 Hz oscillatory synchrony in the human corticospinal system. J. Neurosci. 25 7771–7779. 10.1523/JNEUROSCI.1762-05.2005
    1. Ginis P., Nackaerts E., Nieuwboer A., Heremans E. (2018). Cueing for people with Parkinson’s disease with freezing of gait: a narrative review of the state-of-the-art and novel perspectives. Ann. Phys. Rehabil. Med. 61 407–413. 10.1016/j.rehab.2017.08.002
    1. Goldshtrom Y., Knorr G., Goldshtrom I. (2010). Rhythmic exercises in rehabilitation of TBI patients: a case report. J. Bodyw. Mov. Ther. 14 336–345. 10.1016/j.jbmt.2009.06.002
    1. Gonzalez-Hoelling S., Bertran-Noguer C., Reig-Garcia G., Suñer-Soler R. (2021). Effects of a music-based rhythmic auditory stimulation on gait and balance in subacute stroke. Int. J. Environ. Res. Public Health 18:2032. 10.3390/ijerph18042032
    1. Gooßes M., Saliger J., Folkerts A.-K., Nielsen J., Zierer J., Schmoll P., et al. (2020). Feasibility of Music-Assisted Treadmill Training in Parkinson’s Disease Patients With and Without Deep Brain Stimulation: insights From an Ongoing Pilot Randomized Controlled Trial. Front. Neurol. 11:790. 10.3389/fneur.2020.00790
    1. Grahn J. A., Brett M. (2007). Rhythm and Beat Perception in Motor Areas of the Brain. J. Cogn. Neurosci. 19 893–906. 10.1162/jocn.2007.19.5.893
    1. Grahn J. A., Rowe J. B. (2009). Feeling the Beat: premotor and Striatal Interactions in Musicians and Nonmusicians during Beat Perception. J. Neurosci. 29 7540–7548. 10.1523/JNEUROSCI.2018-08.2009
    1. Grau-Sánchez J., Amengual J. L., Rojo N., Veciana de las Heras M., Montero J., Rubio F., et al. (2013). Plasticity in the sensorimotor cortex induced by Music-supported therapy in stroke patients: a TMS study. Front. Hum. Neurosci. 7:494. 10.3389/fnhum.2013.00494
    1. Grau-Sánchez J., Duarte E., Ramos-Escobar N., Sierpowska J., Rueda N., Redón S., et al. (2018). Music-supported therapy in the rehabilitation of subacute stroke patients: a randomized controlled trial. Ann. N. Y. Acad. Sci. 1423 318–328. 10.1111/nyas.13590
    1. Grau-Sánchez J., Münte T. F., Altenmüller E., Duarte E., Rodríguez-Fornells A. (2020). Potential benefits of music playing in stroke upper limb motor rehabilitation. Neurosci. Biobehav. Rev. 112 585–599. 10.1016/j.neubiorev.2020.02.027
    1. Grau-Sánchez J., Ramos N., Duarte E., Särkämö T., Rodríguez-Fornells A. (2017). Time course of motor gains induced by music-supported therapy after stroke: an exploratory case study. Neuropsychology 31 624–635. 10.1037/neu0000355
    1. Grau-Sánchez J., Segura E., Sanchez-Pinsach D., Raghavan P., Münte T. F., Palumbo A. M., et al. (2021). Enriched Music-supported Therapy for chronic stroke patients: a study protocol of a randomised controlled trial. BMC Neurol. 21:19. 10.1186/s12883-020-02019-1
    1. Guo X., Yamashita M., Suzuki M., Ohsawa C., Asano K., Abe N., et al. (2021). Musical instrument training program improves verbal memory and neural efficiency in novice older adults. Hum. Brain Mapp. 42 1359–1375. 10.1002/hbm.25298
    1. Haire C. M., Tremblay L., Vuong V., Patterson K. K., Chen J. L., Burdette J. H., et al. (2021a). Therapeutic Instrumental Music Training and Motor Imagery in Post-Stroke Upper-Extremity Rehabilitation: a Randomized-Controlled Pilot Study. Arch. Rehabil. Res. Clin. Transl. 3:100162. 10.1016/j.arrct.2021.100162
    1. Haire C. M., Vuong V., Tremblay L., Patterson K. K., Chen J. L., Thaut M. H. (2021b). Effects of therapeutic instrumental music performance and motor imagery on chronic post-stroke cognition and affect: a randomized controlled trial. NeuroRehabilitation 48 195–208. 10.3233/NRE-208014
    1. Harrison E. C., Horin A. P., Earhart G. M. (2019). Mental Singing Reduces Gait Variability More Than Music Listening for Healthy Older Adults and People with Parkinson Disease. J. Neurol. Phys. Ther. 43 204–211. 10.1097/NPT.0000000000000288
    1. He S., Deli A., Fischer P., Wiest C., Huang Y., Martin S., et al. (2021). Gait-phase modulates alpha and beta oscillations in the pedunculopontine nucleus. bioRxiv [Preprint]. 10.1101/2021.03.05.434086
    1. Hegde S. (2014). Music-based cognitive remediation therapy for patients with traumatic brain injury. Front. Neurol. 5:34. 10.3389/fneur.2014.00034
    1. Helmich R. C., Derikx L. C., Bakker M., Scheeringa R., Bloem B. R., Toni I. (2010). Spatial Remapping of Cortico-striatal Connectivity in Parkinson’s Disease. Cereb. Cortex 20 1175–1186. 10.1093/CERCOR/BHP178
    1. Horin A. P., Harrison E. C., Rawson K. S., Earhart G. M. (2020). People with Parkinson disease with and without freezing of gait respond similarly to external and self-generated cues. Gait Posture 82 161–166. 10.1016/j.gaitpost.2020.09.005
    1. Huang W. H., Dou Z. L., Jin H. M., Cui Y., Li X., Zeng Q. (2021). The Effectiveness of Music Therapy on Hand Function in Patients With Stroke: a Systematic Review of Randomized Controlled Trials. Front. Neurol. 12:624. 10.3389/fneur.2021.641023
    1. Hurt C. P., Rice R. R., McIntosh G. C., Thaut M. H. (1998). Rhythmic Auditory Stimulation in Gait Training for Patients with Traumatic Brain Injury. J. Music Ther. 35 228–241. 10.1093/jmt/35.4.228
    1. Hurt-Thaut C. (2008). “Clinical practice in music therapy,” in The Oxford Handbook of Music Psychology, eds Hallam S., Cross I., Thaut M. H. (Oxford: Oxford University Press; ), 819–836. 10.1093/oxfordhb/9780199298457.013.0047
    1. IJmker T., Lamoth C. J. C. (2012). Gait and cognition: the relationship between gait stability and variability with executive function in persons with and without dementia. Gait Posture 35 126–130. 10.1016/j.gaitpost.2011.08.022
    1. Janzen T. B., Thaut M. H. (2018). Rethinking the role of music in the neurodevelopment of autism spectrum disorder. Music Sci. 1 1–18. 10.1177/2059204318769639
    1. Janzen T. B., Thaut M. H. (2019). “Cerebral Organization of Music Processing,” in Cerebral Organization of Music, eds Thaut M. H., Hodges D. A. (New York: Oxford University Press; ), 10.1093/oxfordhb/9780198804123.013.6
    1. Jenkinson N., Brown P. (2011). New insights into the relationship between dopamine, beta oscillations and motor function. Trends Neurosci. 34 611–618. 10.1016/J.TINS.2011.09.003
    1. Kang S., Shin J. H., Kim I. Y., Lee J., Lee J. Y., Jeong E. (2020). Patterns of enhancement in paretic shoulder kinematics after stroke with musical cueing. Sci. Rep. 10:18109. 10.1038/s41598-020-75143-0
    1. Katz-Leurer M., Rotem H., Keren O., Meyer S. (2009). Balance abilities and gait characteristics in post-traumatic brain injury, cerebral palsy and typically developed children. Dev. Neurorehabil. 12 100–105. 10.1080/17518420902800928
    1. Kikkert L. H. J., Vuillerme N., van Campen J. P., Hortobágyi T., Lamoth C. J. (2016). Walking ability to predict future cognitive decline in old adults: a scoping review. Ageing Res. Rev. 27 1–14. 10.1016/j.arr.2016.02.001
    1. Kim S. J., Cho S. R., Yoo G. E. (2017). Age-related changes in bimanual instrument playing with rhythmic cueing. Front. Psychol. 8:1569. 10.3389/fpsyg.2017.01569
    1. Kim S. J., Kwak E. E., Park E. S., Cho S. R. (2012). Differential effects of rhythmic auditory stimulation and neurodevelopmental treatment/Bobath on gait patterns in adults with cerebral palsy: a randomized controlled trial. Clin. Rehabil. 26 904–914. 10.1177/0269215511434648
    1. Kim S. J., Kwak E. E., Park E. S., Lee D. S., Kim K. J., Song J. E., et al. (2011). Changes in gait patterns with rhythmic auditory stimulation in adults with cerebral palsy. NeuroRehabilitation 29 233–241. 10.3233/NRE-2011-0698
    1. Kim S. J., Shin Y. K., Yoo G. E., Chong H. J., Cho S. R. (2016). Changes in gait patterns induced by rhythmic auditory stimulation for adolescents with acquired brain injury. Ann. N. Y. Acad. Sci. 1385 53–62. 10.1111/nyas.13294
    1. Kim S. J., Yoo G. E. (2020). Rhythm-Motor Dual Task Intervention for Fall Prevention in Healthy Older Adults. Front. Psychol. 10:3027. 10.3389/fpsyg.2019.03027
    1. Kim S. J., Yoo G. E., Shin Y. K., Cho S. R. (2020). Gait training for adults with cerebral palsy following harmonic modification in rhythmic auditory stimulation. Ann. N. Y. Acad. Sci. 1473 11–19. 10.1111/nyas.14306
    1. Koelsch S. (2014). Brain correlates of music-evoked emotions. Nat. Rev. Neurosci. 15 170–180. 10.1038/nrn3666
    1. Konoike N., Kotozaki Y., Miyachi S., Miyauchi C. M., Yomogida Y., Akimoto Y., et al. (2012). Rhythm information represented in the fronto-parieto-cerebellar motor system. NeuroImage 63 328–338. 10.1016/j.neuroimage.2012.07.002
    1. Koshimori Y., Strafella A. P., Valli M., Sharma V., Cho S. S., Houle S., et al. (2019). Motor synchronization to rhythmic auditory stimulation (RAS) attenuates dopaminergic responses in ventral striatum in young healthy adults: [11C]-(+)-PHNO PET study. Front. Neurosci. 13:106. 10.3389/fnins.2019.00106
    1. Koshimori Y., Thaut M. H. (2018). Future perspectives on neural mechanisms underlying rhythm and music based neurorehabilitation in Parkinson’s disease. Ageing Res. Rev. 47 133–139. 10.1016/j.arr.2018.07.001
    1. Koshimori Y., Thaut M. H. (2019). New Perspectives on Music in Rehabilitation of Executive and Attention Functions. Front. Neurosci. 13:1245. 10.3389/fnins.2019.01245
    1. Kurz M. J., Arpin D. J., Corr B. (2012). Differences in the dynamic gait stability of children with cerebral palsy and typically developing children. Gait Posture 36 600–604. 10.1016/j.gaitpost.2012.05.029
    1. Kwak E. E. (2007). Effect of Rhythmic Auditory Stimulation on Gait Performance in Children with Spastic Cerebral Palsy. J. Music Ther. 44 198–216. 10.1093/jmt/44.3.198
    1. Ladányi E., Persici V., Fiveash A., Tillmann B., Gordon R. L. (2020). Is atypical rhythm a risk factor for developmental speech and language disorders?. Wiley Interdiscip. Rev. Cogn. Sci. 11:e1528. 10.1002/WCS.1528
    1. Lakatos P., Gross J., Thut G. (2019). A New Unifying Account of the Roles of Neuronal Entrainment. Curr. Biol. 29 R890–R905. 10.1016/j.cub.2019.07.075
    1. Lakatos P., Musacchia G., O’Connel M. N., Falchier A. Y., Javitt D. C., Schroeder C. E. (2013). The Spectrotemporal Filter Mechanism of Auditory Selective Attention. Neuron 77 750–761. 10.1016/j.neuron.2012.11.034
    1. Lampe R., Thienel A., Mitternacht J., Blumenstein T., Turova V., Alves-Pinto A. (2015). Piano training in youths with hand motor impairments after damage to the developing brain. Neuropsychiatr. Dis. Treat. 11 1929–1938. 10.2147/NDT.S84090
    1. Langhorne P., Bernhardt J., Kwakkel G. (2011). Stroke rehabilitation. Lancet 377 1693–1702. 10.1016/S0140-6736(11)60325-5
    1. Langhorne P., Coupar F., Pollock A. (2009). Motor recovery after stroke: a systematic review. Lancet Neurol. 8 741–754. 10.1016/S1474-4422(09)70150-4
    1. Large E. W., Herrera J. A., Velasco M. J. (2015). Neural networks for beat perception in musical rhythm. Front. Syst. Neurosci. 9:159. 10.3389/fnsys.2015.00159
    1. le Perf G., Donguy A. L., Thebault G. (2019). Nuanced effects of music interventions on rehabilitation outcomes after stroke: a systematic review. Top. Stroke Rehabil. 26 473–484. 10.1080/10749357.2019.1623518
    1. Lee S., Lee K., Song C. (2018). Gait training with bilateral rhythmic auditory stimulation in stroke patients: a randomized controlled trial. Brain Sci. 8:164. 10.3390/brainsci8090164
    1. Lense M. D., Ladányi E., Rabinowitch T.-C., Trainor L., Gordon R. (2021). Rhythm and timing as vulnerabilities in neurodevelopmental disorders. Philos. Trans. R. Soc. B Biol. Sci. 376:20200327. 10.1098/rstb.2020.0327
    1. Leow L. A., Waclawik K., Grahn J. A. (2018). The role of attention and intention in synchronization to music: effects on gait. Exp. Brain Res. 236 99–115. 10.1007/s00221-017-5110-5
    1. Lirani-Silva E., Lord S., Moat D., Rochester L., Morris R. (2019). Auditory Cueing for Gait Impairment in Persons with Parkinson Disease: a Pilot Study of Changes in Response with Disease Progression. J. Neurol. Phys. Ther. 43 50–55. 10.1097/NPT.0000000000000250
    1. Lopes J., Keppers I. I. (2021). Music-based therapy in rehabilitation of people with multiple sclerosis: a systematic review of clinical trials. Arq. Neuropsiquiatr. 79 527–535. 10.1590/0004-282X-ANP-2020-0374
    1. Luquin M.-R., Kulisevsky J., Martinez-Martin P., Mir P., Tolosa E. S. (2017). Consensus on the Definition of Advanced Parkinson’s Disease: a Neurologists-Based Delphi Study (CEPA Study). Parkinsons Dis. 2017:4047392. 10.1155/2017/4047392
    1. MacRitchie J., Breaden M., Milne A. J., McIntyre S. (2020). Cognitive, Motor and Social Factors of Music Instrument Training Programs for Older Adults’ Improved Wellbeing. Front. Psychol. 10:2868. 10.3389/fpsyg.2019.02868
    1. Magee W. L., Clark I., Tamplin J., Bradt J. (2017). Music interventions for acquired brain injury. Cochrane Database Syst. Rev. 1:CD006787. 10.1002/14651858.CD006787.pub3
    1. Maggio M. G., Tripoli D., Porcari B., Manuli A., Filoni S., Naro A., et al. (2021). How may patients with MS benefit from using music assisted therapy? A case-control feasability study investigating motor outcomes and beyond. Mult. Scler. Relat. Disord. 48:102713. 10.1016/j.msard.2020.102713
    1. Mainka S., Wissel J., Völler H., Evers S. (2018). The use of rhythmic auditory stimulation to optimize treadmill training for stroke patients: a randomized controlled trial. Front. Neurol. 9:755. 10.3389/fneur.2018.00755
    1. Marrades-Caballero E., Santonja-Medina C. S., Sanz-Mengibar J. M., Santonja-Medina F. (2018). Neurologic music therapy in upper-limb rehabilitation in children with severe bilateral cerebral palsy: a randomized controlled trial. Eur. J. Phys. Rehabil. Med. 54 866–872. 10.23736/S1973-9087.18.04996-1
    1. McIntosh G. C., Brown S. H., Rice R. R., Thaut M. H. (1997). Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 62 22–26. 10.1136/jnnp.62.1.22
    1. Merchant H., Grahn J., Trainor L., Rohrmeier M., Fitch W. T. (2015). Finding the beat: a neural perspective across humans and non-human primates. Philos. Trans. R. Soc. B Biol. Sci. 370:20140093. 10.1098/rstb.2014.0093
    1. Miller N. S., Kwak Y., Bohnen N. I., Müller M. L. T. M., Dayalu P., Seidler R. D. (2013). The pattern of striatal dopaminergic denervation explains sensorimotor synchronization accuracy in Parkinson’s disease. Behav. Brain Res. 257 100–110. 10.1016/j.bbr.2013.09.032
    1. Minino R., Troisi Lopez E., Sorrentino P., Rucco R., Lardone A., Pesoli M., et al. (2021). The effects of different frequencies of rhythmic acoustic stimulation on gait stability in healthy elderly individuals: a pilot study. Sci. Rep. 11:19530. 10.1038/s41598-021-98953-2
    1. Molina R., Hass C. J., Sowalsky K., Schmitt A. C., Opri E., Roper J. A., et al. (2020). Neurophysiological Correlates of Gait in the Human Basal Ganglia and the PPN Region in Parkinson’s Disease. Front. Hum. Neurosci. 14:194. 10.3389/FNHUM.2020.00194
    1. Mollica A., Thaut M., Burke M. J. (2021). Proposing Music-based Interventions for the Treatment of Traumatic Brain Injury Symptoms: current Evidence and Future Directions. Can. J. Psychiatry 66 707–709. 10.1177/07067437211007811
    1. Morris J. H., van Wijck F., Joice S., Donaghy M. (2013). Predicting health related quality of life 6 months after stroke: the role of anxiety and upper limb dysfunction. Disabil. Rehabil. 35 291–299. 10.3109/09638288.2012.691942
    1. Morris M. E., Huxham F., McGinley J., Dodd K., Iansek R. (2001). The biomechanics and motor control of gait in Parkinson disease. Clin. Biomech. 16 459–470. 10.1016/S0268-0033(01)00035-3
    1. Morris M. E., Iansek R., Matyas T. A., Summers J. J. (1994). The pathogenesis of gait hypokinesia in parkinson’s disease. Brain 117 1169–1181. 10.1093/brain/117.5.1169
    1. Moumdjian L., Maes P. J., Dalla Bella S., Decker L. M., Moens B., Feys P., et al. (2020). Detrended fluctuation analysis of gait dynamics when entraining to music and metronomes at different tempi in persons with multiple sclerosis. Sci. Rep. 10:12934. 10.1038/s41598-020-69667-8
    1. Moumdjian L., Moens B., Maes P. J., van Nieuwenhoven J., van Wijmeersch B., Leman M., et al. (2019a). Walking to Music and Metronome at Various Tempi in Persons With Multiple Sclerosis: a Basis for Rehabilitation. Neurorehabil. Neural Repair 33 464–475. 10.1177/1545968319847962
    1. Moumdjian L., Moens B., Vanzeir E., de Klerck B., Feys P., Leman M. (2019b). A model of different cognitive processes during spontaneous and intentional coupling to music in multiple sclerosis. Ann. N. Y. Acad. Sci. 1445 27–38. 10.1111/nyas.14023
    1. Moumdjian L., Sarkamo T., Leone C., Leman M., Feys P. (2017). Effectiveness of music-based interventions on motricity or cognitive functioning in neurological populations: a systematic review. Eur. J. Phys. Rehabil. Med. 53 466–482. 10.23736/S1973-9087.16.04429-4
    1. Münte T. F., Altenmüller E., Jäncke L. (2002). The musician’s brain as a model of neuroplasticity. Nat. Rev. Neurosci. 3 473–478. 10.1038/nrn843
    1. Naro A., Pignolo L., Sorbera C., Latella D., Billeri L., Manuli A., et al. (2020). A Case-Controlled Pilot Study on Rhythmic Auditory Stimulation-Assisted Gait Training and Conventional Physiotherapy in Patients With Parkinson’s Disease Submitted to Deep Brain Stimulation. Front. Neurol. 11:794. 10.3389/fneur.2020.00794
    1. Nascimento L. R., de Oliveira C. Q., Ada L., Michaelsen S. M., Teixeira-Salmela L. F. (2015). Walking training with cueing of cadence improves walking speed and stride length after stroke more than walking training alone: a systematic review. J. Physiother. 61 10–15. 10.1016/j.jphys.2014.11.015
    1. Nobre A. C., van Ede F. (2018). Anticipated moments: temporal structure in attention. Nat. Rev. Neurosci. 19 34–48. 10.1038/nrn.2017.141
    1. Nombela C., Hughes L. E., Owen A. M., Grahn J. A. (2013). Into the groove: can rhythm influence Parkinson’s disease?. Neurosci. Biobehav. Rev. 37 2564–2570. 10.1016/j.neubiorev.2013.08.003
    1. Nozaradan S. (2014). Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging. Philos. Trans. R. Soc. B Biol. Sci. 369:20130393. 10.1098/rstb.2013.0393
    1. Nozaradan S., Peretz I., Missal M., Mouraux A. (2011). Tagging the Neuronal Entrainment to Beat and Meter. J. Neurosci. 31 10234–10240. 10.1523/JNEUROSCI.0411-11.2011
    1. Nozaradan S., Peretz I., Mouraux A. (2012). Selective Neuronal Entrainment to the Beat and Meter Embedded in a Musical Rhythm. J. Neurosci. 32 17572–17581. 10.1523/JNEUROSCI.3203-12.2012
    1. Oakes D., Shoulson I., Kieburtz K., Rudolph A., Lang A., Western Hos-pital T., et al. (2004). Levodopa and the Progression of Parkinson’s Disease. N. Engl. J. Med. 351 2498–2508. 10.1056/NEJMoa033447
    1. Oreja-Guevara C., Blanco T. A., Ruiz L. B., Pérez M. ÁH., Meca-Lallana V., Ramió-Torrentà L. (2019). Cognitive dysfunctions and assessments in multiple sclerosis. Front. Neurol. 10:581. 10.3389/fneur.2019.00581
    1. Pakula A. T., van Naarden Braun K., Yeargin-Allsopp M. (2009). Cerebral Palsy: classification and Epidemiology. Phys. Med. Rehabil. Clin. N. Am. 20 425–452. 10.1016/j.pmr.2009.06.001
    1. Park K. S., Hass C. J., Janelle C. M. (2021). Familiarity with music influences stride amplitude and variability during rhythmically-cued walking in individuals with Parkinson’s disease. Gait Posture 87 101–109. 10.1016/j.gaitpost.2021.04.028
    1. Pascual-Leone A. (2001). The Brain That Plays Music and Is Changed by It. Ann. N. Y. Acad. Sci. 930 315–329. 10.1111/j.1749-6632.2001.tb05741.x
    1. Peng Y. C., Lu T. W., Wang T. H., Chen Y. L., Liao H. F., Lin K. H., et al. (2011). Immediate effects of therapeutic music on loaded sit-to-stand movement in children with spastic diplegia. Gait Posture 33 274–278. 10.1016/j.gaitpost.2010.11.020
    1. Petter E. A., Lusk N. A., Hesslow G., Meck W. H. (2016). Interactive roles of the cerebellum and striatum in sub-second and supra-second timing: support for an initiation, continuation, adjustment, and termination (ICAT) model of temporal processing. Neurosci. Biobehav. Rev. 71 739–755. 10.1016/j.neubiorev.2016.10.015
    1. Prassas S., Thaut M., McIntosh G., Rice R. (1997). Effect of auditory rhythmic cuing on gait kinematic parameters of stroke patients. Gait Posture 6 218–223. 10.1016/S0966-6362(97)00010-6
    1. Raghavan P., Geller D., Guerrero N., Aluru V., Eimicke J. P., Teresi J. A., et al. (2016). Music Upper Limb Therapy—Integrated: an enriched collaborative approach for stroke rehabilitation. Front. Hum. Neurosci. 10:498. 10.3389/fnhum.2016.00498
    1. Ramakrishnana A., Byunb Y. W., Rand K., Pedersen C. E., Lebedev M. A., Nicolelis M. A. L. (2017). Cortical neurons multiplex reward-related signals along with sensory and motor information. Proc. Natl. Acad. Sci. U. S. A. 114 E4841–E4850. 10.1073/pnas.1703668114
    1. Rehme A. K., Eickhoff S. B., Rottschy C., Fink G. R., Grefkes C. (2012). Activation likelihood estimation meta-analysis of motor-related neural activity after stroke. NeuroImage 59 2771–2782. 10.1016/j.neuroimage.2011.10.023
    1. Ripollés P., Rojo N., Grau-Sánchez J., Amengual J. L., Càmara E., Marco-Pallarés J., et al. (2016). Music supported therapy promotes motor plasticity in individuals with chronic stroke. Brain Imaging Behav. 10 1289–1307. 10.1007/s11682-015-9498-x
    1. Roberts S., Eykholt R., Thaut M. H. (2000). Analysis of correlations and search for evidence of deterministic chaos in rhythmic motor control by the human brain. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62 2597–2607. 10.1103/PhysRevE.62.2597
    1. Rocha P. A., Porfírio G. M., Ferraz H. B., Trevisani V. F. M. (2014). Effects of external cues on gait parameters of Parkinson’s disease patients: a systematic review. Clini. Neurol. Neurosurg. 124 127–134. 10.1016/j.clineuro.2014.06.026
    1. Rodriguez-Fornells A., Rojo N., Amengual J. L., Ripollés P., Altenmüller E., Münte T. F. (2012). The involvement of audio-motor coupling in the music-supported therapy applied to stroke patients. Ann. N. Y. Acad. Sci. 1252 282–293. 10.1111/j.1749-6632.2011.06425.x
    1. Rosenbaum P., Paneth N., Leviton A., Goldstein M., Bax M. (2007). A report: the definition and classification of cerebral palsy April 2006. Dev. Med. Child Neurol. 49 8–14. 10.1111/j.1469-8749.2007.tb12610.x
    1. Ross B., Barat M., Fujioka T. (2017). Sound-Making Actions Lead to Immediate Plastic Changes of Neuromagnetic Evoked Responses and Induced β-Band Oscillations during Perception. J. Neurosci. 37 5948–5959. 10.1523/JNEUROSCI.3613-16.2017
    1. Saleh M., Reimer J., Penn R., Ojakangas C. L., Hatsopoulos N. G. (2010). Fast and Slow Oscillations in Human Primary Motor Cortex Predict Oncoming Behaviorally Relevant Cues. Neuron 65 461–471. 10.1016/j.neuron.2010.02.001
    1. Salimpoor V. N., Benovoy M., Larcher K., Dagher A., Zatorre R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 14 257–264. 10.1038/nn.2726
    1. Sarno S., de Lafuente V., Romo R., Parga N. (2017). Dopamine reward prediction error signal codes the temporal evaluation of a perceptual decision report. Proc. Natl. Acad. Sci. U. S. A. 114 E10494–E10503. 10.1073/pnas.1712479114
    1. Schaffert N., Braun Janzen T., Mattes K., Thaut M. H. (2019). A Review on the Relationship Between Sound and Movement in Sports and Rehabilitation. Front. Psychol. 10:244. 10.3389/fpsyg.2019.00244
    1. Schmahmann J. D., Pandya D. N., Wang R., Dai G., D’Arceuil H. E., de Crespigny A. J., et al. (2007). Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130 630–653. 10.1093/BRAIN/AWL359
    1. Schneider C. E., Hunter E. G., Bardach S. H. (2019). Potential Cognitive Benefits From Playing Music Among Cognitively Intact Older Adults: a Scoping Review. J. Appl. Gerontol. 38 1763–1783. 10.1177/0733464817751198
    1. Schneider S., Münte T., Rodriguez-Fornells A., Sailer M., Altenmüller E. (2010). Music-supported training is more efficient than functional motor training for recovery of fine motor skills in stroke patients. Music Percept. 27 271–280. 10.1525/mp.2010.27.4.271
    1. Schneider S., Schönle P. W., Altenmüller E., Münte T. F. (2007). Using musical instruments to improve motor skill recovery following a stroke. J. Neurol. 254 1339–1346. 10.1007/s00415-006-0523-2
    1. Schweizer M., Eylon S., Katz-Leurer M. (2020). The correlation between rhythm perception and gait characteristics at different rhythms among children with cerebral palsy and typically developing children. Gait Posture 82 83–89. 10.1016/j.gaitpost.2020.08.120
    1. Seebacher B., Kuisma R., Glynn A., Berger T. (2017). The effect of rhythmic-cued motor imagery on walking, fatigue and quality of life in people with multiple sclerosis: a randomised controlled trial. Mult. Scler. 23 286–296. 10.1177/1352458516644058
    1. Seebacher B., Kuisma R., Glynn A., Berger T. (2019). Effects and mechanisms of differently cued and non-cued motor imagery in people with multiple sclerosis: a randomised controlled trial. Mult. Scler. J. 25 1593–1604. 10.1177/1352458518795332
    1. Seinfeld S., Figueroa H., Ortiz-Gil J., Sanchez-Vives M. V. (2013). Effects of music learning and piano practice on cognitive function, mood and quality of life in older adults. Front. Psychol. 4:810. 10.3389/fpsyg.2013.00810
    1. Shahraki M., Sohrabi M., Taheri Torbati H. R., Nikkhah K., NaeimiKia M. (2017). Effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis. J. Med. Life 10 33–37.
    1. Sheridan C., Thaut C., Brooks D., Patterson K. K. (2021). Feasibility of a rhythmic auditory stimulation gait training program in community-dwelling adults after TBI: a case report. NeuroRehabilitation 48 221–230. 10.3233/NRE-208016
    1. Sihvonen A. J., Särkämö T., Leo V., Tervaniemi M., Altenmüller E., Soinila S. (2017). Music-based interventions in neurological rehabilitation. Lancet Neurol. 16 648–660. 10.1016/S1474-4422(17)30168-0
    1. Siponkoski S.-T., Martínez-Molina N., Kuusela L., Laitinen S., Holma M., Ahlfors M., et al. (2020). Music Therapy Enhances Executive Functions and Prefrontal Structural Neuroplasticity after Traumatic Brain Injury: evidence from a Randomized Controlled Trial. J. Neurotrauma 37 618–634. 10.1089/neu.2019.6413
    1. Snyder J. S., Large E. W. (2005). Gamma-band activity reflects the metric structure of rhythmic tone sequences. Cogn. Brain Res. 24 117–126. 10.1016/J.COGBRAINRES.2004.12.014
    1. Spaulding S. J., Barber B., Colby M., Cormack B., Mick T., Jenkins M. E. (2013). Cueing and Gait Improvement Among People With Parkinson’s Disease: a Meta-Analysis. Arch. Phys. Med. Rehabil. 94 562–570. 10.1016/j.apmr.2012.10.026
    1. Stephan K. M., Thaut M. H., Wunderlich G., Schicks W., Tian B., Tellmann L., et al. (2002). Conscious and subconscious sensorimotor synchronization-Prefrontal cortex and the influence of awareness. Neuroimage 15 345–352. 10.1006/nimg.2001.0929
    1. Street A., Zhang J., Pethers S., Bond K., Wiffen L., Palmer H. (2020). Neurologic music therapy in multidisciplinary acute stroke rehabilitation: could it be feasible and helpful?. Top. Stroke Rehabil. 27 541–552. 10.1080/10749357.2020.1729585
    1. Street A. J., Fachner J., Magee W. L. (2019). Upper limb rehabilitation in chronic stroke using neurologic music therapy: two contrasting case studies to inform on treatment delivery and patient suitability. Nord. J. Music Ther. 28 382–404. 10.1080/08098131.2019.1606848
    1. Street A. J., Magee W. L., Bateman A., Parker M., Odell-Miller H., Fachner J. (2018). Home-based neurologic music therapy for arm hemiparesis following stroke: results from a pilot, feasibility randomized controlled trial. Clin. Rehabil. 32 18–28. 10.1177/0269215517717060
    1. Tal I., Large E. W., Rabinovitch E., Wei Y., Schroeder C. E., Poeppel D., et al. (2017). Neural entrainment to the beat: the “missing-pulse” phenomenon. J. Neurosci. 37 6331–6341. 10.1523/JNEUROSCI.2500-16.2017
    1. Thaut M., Koshimori Y. (2020). “Neurorehabilitation in aging through neurologic music therapy,”in Music and the Aging Brain eds Cuddy L. L., Belleville S. (Amsterdam: Elsevier; ), 351–382. 10.1016/b978-0-12-817422-7.00014-6
    1. Thaut M., McIntosh G. C., Rice R. R. (1997). Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation. J. Neurol. Sci. 151 207–212. 10.1016/S0022-510X(97)00146-9
    1. Thaut M., Schleiffers S., Davis W. (1991). Analysis of emg activity in biceps and triceps muscle in an upper extremity gross motor task under the influence of auditory rhythm. J. Music Ther. 28 64–88. 10.1093/jmt/28.2.64
    1. Thaut M. H. (2005). Rhythm, Music, and the Brain: Scientific Foundations and Clinical Applications. New York: Routledge, 10.4324/9780203958827
    1. Thaut M. H. (2010). Neurologic music therapy in cognitive rehabilitation. Music Percept. 27 281–285. 10.1525/mp.2010.27.4.281
    1. Thaut M. H., Abiru M. (2010). Rhythmic auditory stimulation in rehabilitation of movement disorders: a review of current research. Music Percept. 27 263–269. 10.1525/mp.2010.27.4.263
    1. Thaut M. H., Hoemberg V. (eds) (2014). Handbook of Neurologic Music Therapy. New York: Oxford University Press.
    1. Thaut M. H., Hurt C. P., Dragan D., McIntosh G. C. (1998). Rhythmic entrainment of gait patterns in children with cerebral palsy. Dev. Med. Child Neurol. 40:15.
    1. Thaut M. H., Kenyon G. P. (2003). Rapid motor adaptations to subliminal frequency shifts during syncopated rhythmic sensorimotor synchronization. Hum. Mov. Sci. 22 321–338. 10.1016/S0167-9457(03)00048-4
    1. Thaut M. H., Kenyon G. P., Hurt C. P., McIntosh G. C., Hoemberg V. (2002). Kinematic optimization of spatiotemporal patterns in paretic arm training with stroke patients. Neuropsychologia 40 1073–1081. 10.1016/S0028-3932(01)00141-5
    1. Thaut M. H., Kenyon G. P., Schauer M. L., McIntosh G. C. (1999). The connection between rhythmicity and brain function. IEEE Eng. Med. Biol. Mag. 18 101–108. 10.1109/51.752991
    1. Thaut M. H., Leins A. K., Rice R. R., Argstatter H., Kenyon G. P., McIntosh G. C., et al. (2007). Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: a single-blind, randomized trial. Neurorehabil. Neural Repair 21 455–459. 10.1177/1545968307300523
    1. Thaut M. H., McIntosh G. C. (2014). Neurologic Music Therapy in Stroke Rehabilitation. Curr. Phys. Med. Rehabil. Rep. 2 106–113. 10.1007/s40141-014-0049-y
    1. Thaut M. H., McIntosh G. C., Hoemberg V. (2015). Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system. Front. Psychol. 5:1185. 10.3389/fpsyg.2015.01185
    1. Thaut M. H., McIntosh G. C., Prassas S. G., Rice R. R. (1993). Effect of Rythmic Auditory curing on Temporal Stride Parameters and EMG Patterns in Hemiparetic Gait of Stroke Patients. J. Neurol Rehabil. 7 9–16.
    1. Thaut M. H., McIntosh G. C., Rice R. R., Miller R. A., Rathbun J., Brault J. M. (1996). Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Mov. Disord. 11 193–200. 10.1002/mds.870110213
    1. Thaut M. H., Rice R. R., Braun Janzen T., Hurt-Thaut C. P., McIntosh G. C. (2019). Rhythmic auditory stimulation for reduction of falls in Parkinson’s disease: a randomized controlled study. Clin. Rehabil. 33 34–43. 10.1177/0269215518788615
    1. Thaut M. H., Stephan K. M., Wunderlich G., Schicks W., Tellmann L., Herzog H., et al. (2009). Distinct cortico-cerebellar activations in rhythmic auditory motor synchronization. Cortex 45 44–53. 10.1016/j.cortex.2007.09.009
    1. Thevathasan W., Cole M. H., Graepel C. L., Hyam J. A., Jenkinson N., Brittain J.-S., et al. (2012a). A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation. Brain 135 1446–1454. 10.1093/BRAIN/AWS039
    1. Thevathasan W., Pogosyan A., Hyam J. A., Jenkinson N., Foltynie T., Limousin P., et al. (2012b). Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain 135 148–160. 10.1093/BRAIN/AWR315
    1. Thompson S., Hays K., Weintraub A., Ketchum J. M., Kowalski R. G. (2021). Rhythmic Auditory Stimulation and Gait Training in Traumatic Brain Injury: a Pilot Study. J. Music Ther. 58 70–94. 10.1093/jmt/thaa016
    1. Tian R., Zhang B., Zhu Y. (2020). Rhythmic Auditory Stimulation as an Adjuvant Therapy Improved Post-stroke Motor Functions of the Upper Extremity: a Randomized Controlled Pilot Study. Front. Neurosci. 14:649. 10.3389/fnins.2020.00649
    1. Tong Y., Forreider B., Sun X., Geng X., Zhang W., Du H., et al. (2015). Music-supported therapy (MST) in improving post-stroke patients’ upper-limb motor function: a randomised controlled pilot study. Neurol. Res. 37 434–440. 10.1179/1743132815Y.0000000034
    1. Trombetti A., Hars M., Herrmann F. R., Kressig R. W., Ferrari S., Rizzoli R. (2011). Effect of music-based multitask training on gait, balance, and fall risk in elderly people: a randomized controlled trial. Arch. Intern. Med. 171 525–533. 10.1001/archinternmed.2010.446
    1. van Ede F., Szebényi S., Maris E. (2014). Attentional modulations of somatosensory alpha, beta and gamma oscillations dissociate between anticipation and stimulus processing. Neuroimage 97 134–141. 10.1016/J.NEUROIMAGE.2014.04.047
    1. Varsamis P., Staikopoulos K., Kartasidou L. (2012). Effect Of Rhythmic Auditory Stimulation On Controlling Stepping Cadence Of Individuals With Mental Retardation And Cerebral Palsy. Int. J. Spec. Educ. 27 68–75.
    1. Vik B. M. D., Skeie G. O., Specht K. (2019). Neuroplastic effects in patients with traumatic brain injury after music-supported therapy. Front. Hum. Neurosci. 13:177. 10.3389/fnhum.2019.00177
    1. Vik B. M. D., Skeie G. O., Vikane E., Specht K. (2018). Effects of music production on cortical plasticity within cognitive rehabilitation of patients with mild traumatic brain injury. Brain Inj. 32 634–643. 10.1080/02699052.2018.1431842
    1. Vinciguerra C., de Stefano N., Federico A. (2019). Exploring the role of music therapy in multiple sclerosis: brief updates from research to clinical practice. Neurol. Sci. 40 2277–2285. 10.1007/s10072-019-04007-x
    1. Vitorio R., Stuart S., Gobbi L. T. B., Rochester L., Alcock L., Pantall A. (2018). Reduced Gait Variability and Enhanced Brain Activity in Older Adults With Auditory Cues: a Functional Near-Infrared Spectroscopy Study. Neurorehabil. Neural Repair 32 976–987. 10.1177/1545968318805159
    1. Wang T. H., Peng Y. C., Chen Y. L., Lu T. W., Liao H. F., Tang P. F., et al. (2013). A home-based program using patterned sensory enhancement improves resistancance exercise effects for children with cerebral palsy: a randomized controlled trial. Neurorehabil. Neural Repair 27 684–694. 10.1177/1545968313491001
    1. Wang Y., Pan W.-Y., Li F., Ge J.-S., Zhang X., Luo X., et al. (2021). Effect of Rhythm of Music Therapy on Gait in Patients with Stroke. J. Stroke Cerebrovasc. Dis. 30:105544. 10.1016/j.jstrokecerebrovasdis.2020.105544
    1. Williams G., Galna B., Morris M. E., Olver J. (2010). Spatiotemporal deficits and kinematic classification of gait following a traumatic brain injury: a systematic review. J. Head Trauma Rehabil. 25 366–374. 10.1097/HTR.0b013e3181cd3600
    1. Wittwer J. E., Webster K. E., Hill K. (2013). Effect of Rhythmic Auditory Cueing on Gait in People With Alzheimer Disease. Arch. Phys. Med. Rehabil. 94 718–724. 10.1016/j.apmr.2012.11.009
    1. Wittwer J. E., Winbolt M., Morris M. E. (2020). Home-Based Gait Training Using Rhythmic Auditory Cues in Alzheimer’s Disease: feasibility and Outcomes. Front. Med. 6:335. 10.3389/fmed.2019.00335
    1. Worschech F., Marie D., Jünemann K., Sinke C., Krüger T. H. C., Großbach M., et al. (2021). Improved Speech in Noise Perception in the Elderly After 6 Months of Musical Instruction. Front. Neurosci. 15:840. 10.3389/fnins.2021.696240
    1. Zendel B. R., West G. L., Belleville S., Peretz I. (2019). Musical training improves the ability to understand speech-in-noise in older adults. Neurobiol. Aging 81 102–115. 10.1016/j.neurobiolaging.2019.05.015
    1. Zhang Y., Cai J., Zhang Y., Ren T., Zhao M., Zhao Q. (2016). Improvement in Stroke-induced Motor Dysfunction by Music-supported Therapy: a Systematic Review and Meta-Analysis. Sci. Rep. 6:38521. 10.1038/srep38521
    1. Zhou Z., Zhou R., Wei W., Luan R., Li K. (2021). Effects of music-based movement therapy on motor function, balance, gait, mental health, and quality of life for patients with Parkinson’s disease: a systematic review and meta-analysis. Clin. Rehabil. 35 937–951. 10.1177/0269215521990526

Source: PubMed

3
Tilaa