Elements virtual rehabilitation improves motor, cognitive, and functional outcomes in adult stroke: evidence from a randomized controlled pilot study

Jeffrey M Rogers, Jonathan Duckworth, Sandy Middleton, Bert Steenbergen, Peter H Wilson, Jeffrey M Rogers, Jonathan Duckworth, Sandy Middleton, Bert Steenbergen, Peter H Wilson

Abstract

Background: Virtual reality technologies show potential as effective rehabilitation tools following neuro-trauma. In particular, the Elements system, involving customized surface computing and tangible interfaces, produces strong treatment effects for upper-limb and cognitive function following traumatic brain injury. The present study evaluated the efficacy of Elements as a virtual rehabilitation approach for stroke survivors.

Methods: Twenty-one adults (42-94 years old) with sub-acute stroke were randomized to four weeks of Elements virtual rehabilitation (three weekly 30-40 min sessions) combined with treatment as usual (conventional occupational and physiotherapy) or to treatment as usual alone. Upper-limb skill (Box and Blocks Test), cognition (Montreal Cognitive Assessment and selected CogState subtests), and everyday participation (Neurobehavioral Functioning Inventory) were examined before and after inpatient training, and one-month later.

Results: Effect sizes for the experimental group (d = 1.05-2.51) were larger compared with controls (d = 0.11-0.86), with Elements training showing statistically greater improvements in motor function of the most affected hand (p = 0.008), and general intellectual status and executive function (p ≤ 0.001). Proportional recovery was two- to three-fold greater than control participants, with superior transfer to everyday motor, cognitive, and communication behaviors. All gains were maintained at follow-up.

Conclusion: A course of Elements virtual rehabilitation using goal-directed and exploratory upper-limb movement tasks facilitates both motor and cognitive recovery after stroke. The magnitude of training effects, maintenance of gains at follow-up, and generalization to daily activities provide compelling preliminary evidence of the power of virtual rehabilitation when applied in a targeted and principled manner.

Trial registration: this pilot study was not registered.

Keywords: Cognition; Motor activity; Rehabilitation; Stroke; Upper extremity; Virtual reality.

Conflict of interest statement

Ethics approval and consent to participate

This study was approved by the Human Research Ethics Committees of South Eastern Sydney Local Health District (Ref: 14/316) and the Australian Catholic University (Ref: 2016-2R), and performed in accordance with their guidelines. All participants (or their carers) provided written informed consent prior to participation.

Consent for publication

All participants (or their carers) provided written informed consent for aggregate, de-identified study results to be published in peer-reviewed journals, presentation at conferences or other professional forums.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Examples of the Elements (a) goal-directed Bases task with visual augmented feedback, and (b) exploratory Squiggles task

References

    1. Deloitte access economics . Stroke in Australia: No postcode untouched. Melbourne: National Stroke Foundation; 2017.
    1. Meyer S, Verheyden G, Brinkmann N, Dejaeger E, De Weerdt W, Feys H, Gantenbein AR, Jenni W, Laenen A, Lincoln N, et al. Functional and motor outcome 5 years after stroke is equivalent to outcome at 2 months: follow-up of the collaborative evaluation of rehabilitation in stroke across Europe. Stroke. 2015;46:1613–1619. doi: 10.1161/STROKEAHA.115.009421.
    1. Kalaria RN, Akinyemi R, Ihara M. Stroke injury, cognitive impairment and vascular dementia. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2016;1862:915–925. doi: 10.1016/j.bbadis.2016.01.015.
    1. Barker-Collo S, Starkey N, Lawes CM, Feigin V, Senior H, Parag V. Neuropsychological profiles of 5-year ischemic stroke survivors by Oxfordshire stroke classification and hemisphere of lesion. Stroke. 2012;43:50–55. doi: 10.1161/STROKEAHA.111.627182.
    1. Vargus-Adams JN, Majnemer A. International classification of functioning, disability and health (ICF) as a framework for change: revolutionizing rehabilitation. J Child Neurol. 2014;29:1030–1035. doi: 10.1177/0883073814533595.
    1. World Health Organization. International Classification of Functioning, Disability and Health: ICF: World Health Organization; 2017.
    1. Cumming TB, Marshall RS, Lazar RM. Stroke, cognitive deficits, and rehabilitation: still an incomplete picture. Int J Stroke. 2013;8:38–45. doi: 10.1111/j.1747-4949.2012.00972.x.
    1. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377:1693–1702. doi: 10.1016/S0140-6736(11)60325-5.
    1. Aminov A, Rogers JM, Middleton S, Caeyenberghs K, Wilson PH. What do randomized controlled trials say about virtual rehabilitation in stroke? A systematic literature review and meta-analysis of upper-limb and cognitive outcomes. J Neuroeng Rehabil. 2018;15:29. doi: 10.1186/s12984-018-0370-2.
    1. Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017.
    1. Lohse KR, Hilderman CG, Cheung KL, Tatla S, Van der Loos HF. Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS One. 2014;9:e93318. doi: 10.1371/journal.pone.0093318.
    1. Maier M, Rubio Ballester B, Duff A, Duarte Oller E, Verschure P. Effect of specific over nonspecific VR-based rehabilitation on Poststroke motor recovery: a systematic meta-analysis. Neurorehabil Neural Repair. 2019;33:112–129. doi: 10.1177/1545968318820169.
    1. Sakzewski L, Ziviani J, Boyd RN. Efficacy of upper limb therapies for unilateral cerebral palsy: a meta-analysis. Pediatrics. 2013:peds. 2013–0675.
    1. Weiss PL, Kizony R, Feintuch U, Katz N. Textbook of neural repair and rehabilitation. 2006. Virtual reality in neurorehabilitation; pp. 182–197.
    1. Edmans JA, Gladman JR, Cobb S, Sunderland A, Pridmore T, Hilton D, Walker MF. Validity of a virtual environment for stroke rehabilitation. Stroke. 2006;37:2770–2775. doi: 10.1161/01.STR.0000245133.50935.65.
    1. Kwakkel G, ven Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, Miller K, Lincoln N, Partridge C, Wellwood I, Langhorne P. Effects of augmented excercise therapy time after stroke: a meta-analysis. Stroke. 2004;35:2529–2539. doi: 10.1161/01.STR.0000143153.76460.7d.
    1. Merians AS, Jack D, Boian R, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H. Virtual reality-augmented rehabiliataion for patients following stroke. Phys Ther. 2002;82:898–915.
    1. Rizzo AA, Schultheis M, Kerns KA, Mateer C. Analysis of assets for virtual reality applications in neuropsychology. Neuropsychol Rehabil. 2004;14:207–239. doi: 10.1080/09602010343000183.
    1. dos Santos Palma GC, Freitas TB, Bonuzzi GMG, Soares MAA, Leite PHW, Mazzini NA, Almeida MRG, Pompeu JE, Torriani-Pasin C. Effects of virtual reality for stroke individuals based on the international classification of functioning and health: a systematic review. Top Stroke Rehabil. 2017;24:269–278. doi: 10.1080/10749357.2016.1250373.
    1. Saposnik G, Cohen LG, Mamdani M, Pooyania S, Ploughman M, Cheung D, Shaw J, Hall J, Nord P, Dukelow S. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol. 2016;15:1019–1027. doi: 10.1016/S1474-4422(16)30121-1.
    1. Saposnik G, Levin M. Stroke outcome research Canada working group: virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke. 2011;42:1380–1386. doi: 10.1161/STROKEAHA.110.605451.
    1. Management of Stroke Rehabilitation Working Group VA/DOD clinical practice guideline for the management of stroke rehabilitation. J Rehabil Res Dev. 2010;47:1. doi: 10.1682/JRRD.2009.07.0095.
    1. Billinger SA, Arena R, Bernhardt J, Eng JJ, Franklin BA, Johnson CM, MacKay-Lyons M, Macko RF, Mead GE, Roth EJ. Physical activity and exercise recommendations for stroke survivors. Stroke. 2014;45:2532–2553. doi: 10.1161/STR.0000000000000022.
    1. Stroke Foundation: clinical guidelines for stroke management. Melbourne, Australia; 2017.
    1. Mullick AA, Subramanian SK, Levin MF. Emerging evidence of the association between cognitive deficits and arm motor recovery after stroke: a meta-analysis. Restor Neurol Neurosci. 2015;33:389–403.
    1. Chen C, Leys D, Esquenazi A. The interaction between neuropsychological and motor deficits in patients after stroke. Neurology. 2013;80:S27–S34. doi: 10.1212/WNL.0b013e3182762569.
    1. Leisman G, Moustafa AA, Shafir T. Thinking, walking, talking: integratory motor and cognitive brain function. Front Public Health. 2016;4:94. doi: 10.3389/fpubh.2016.00094.
    1. Subramanian SK, Chilingaryan G, Levin MF, Sveistrup H: Influence of training environment and cognitive deficits on use of feedback for motor learning in chronic stroke. In Virtual Rehabilitation Proceedings (ICVR), 2015 International Conference on IEEE; 2015: 38–43.
    1. Kim BR, Chun MH, Kim LS, Park JY. Effect of virtual reality on cognition in stroke patients. Ann Rehabil Med. 2011;35:450–459. doi: 10.5535/arm.2011.35.4.450.
    1. Gamito P, Oliveira J, Coelho C, Morais D, Lopes P, Pacheco J, Brito R, Soares F, Santos N, Barata AF. Cognitive training on stroke patients via virtual reality-based serious games. Disabil Rehabil. 2017;39:385–388. doi: 10.3109/09638288.2014.934925.
    1. Choi JH, Han EY, Kim BR, Kim SM, Im SH, Lee SY, Hyun CW. Effectiveness of commercial gaming-based virtual reality movement therapy on functional recovery of upper extremity in subacute stroke patients. Ann Rehabil Med. 2014;38:485–493. doi: 10.5535/arm.2014.38.4.485.
    1. Kihoon J, Yu J, Jung J. Effects of virtual reality-based rehabilitation on upper extremity function and visual perception in stroke patients: a randomized control trial. J Phys Ther Sci. 2012;24:1205–1208. doi: 10.1589/jpts.24.1205.
    1. Fritz NE, Cheek FM, Nichols-Larsen DS. Motor-cognitive dual-task training in neurologic disorders: a systematic review. J Neurol Phys Ther. 2015;39:142. doi: 10.1097/NPT.0000000000000090.
    1. McDonald MW, Hayward KS, Rosbergen ICM, Jeffers MS, Corbett D. Is environmental enrichment ready for clinical application in human post-stroke rehabilitation? Front Behav Neurosci. 2018;12.
    1. Zimmerli L, Jacky M, Lunenburger L, Riener R, Bolliger M. Increasing patient engagement during virtual reality-based motor rehabilitation. Arch Phys Med Rehabil. 2013;94:1737–1746. doi: 10.1016/j.apmr.2013.01.029.
    1. Schultheis MT, Rizzo AA. The application of virtual reality technology in rehabilitation. J Clin Psychiatry. 2001;62:617–622. doi: 10.4088/JCP.v62n0808.
    1. Mumford N, Duckworth J, Thomas PR, Shum D, Williams G, Wilson PH. Upper-limb virtual rehabilitation for traumatic brain injury: a preliminary within-group evaluation of the elements system. Brain Inj. 2012;26:166–176. doi: 10.3109/02699052.2011.648706.
    1. Green D, Wilson PH. Use of virtual reality in rehabilitation of movement in children with hemiplegia − a multiple case study evaluation. Disabil Rehabil. 2012;34:593–604. doi: 10.3109/09638288.2011.613520.
    1. Mumford N, Duckworth J, Thomas PR, Shum D, Williams G, Wilson PH. Upper limb virtual rehabilitation for traumatic brain injury: initial evaluation of the elements system. Brain Inj. 2010;24:780–791. doi: 10.3109/02699051003652807.
    1. Desrosiers J, Bravo G, Hebert R, Dutil E, Mercier L. Validation of the box and block test as a measure of dexterity of elderly people: reliability, validity, and norms studies. Arch Phys Med Rehabil. 1994;75:751–755.
    1. Vratsistas-Curto A, Sherrington C, McCluskey A. Responsiveness of five measures of arm function in acute stroke rehabilitation. Clin Rehabil. 2018;32:1098–1107. doi: 10.1177/0269215518778316.
    1. Platz T, Pinkowski C, van Wijck F, Kim I, Di Bella P, Johnson G. Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer test, action research arm test and box and block test: a multicentre study. Clin Rehabil. 2005;19:404–411. doi: 10.1191/0269215505cr832oa.
    1. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–699. doi: 10.1111/j.1532-5415.2005.53221.x.
    1. Burton L, Tyson SF. Screening for cognitive impairment after stroke: a systematic review of psychometric properties and clinical utility. J Rehabil Med. 2015;45:193–203. doi: 10.2340/16501977-1930.
    1. Cumming TB, Bernhardt J, Linden T. The Montreal cognitive assessment: short cognitive evaluation in a large stroke trial. Stroke. 2011;42:2642–2644. doi: 10.1161/STROKEAHA.111.619486.
    1. Maruff P, Thomas E, Cysique L, Brew B, Collie A, Snyder P, Pietrzak RH. Validity of the CogState brief battery: relationship to standardized tests and sensitivity to cognitive impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia complex. Arch Clin Neuropsychol. 2009;24:165–178. doi: 10.1093/arclin/acp010.
    1. Falleti MG, Maruff P, Collie A, Darby DG. Practice effects associated with the repeated assessment of cognitive function using the CogState battery at 10-minute, one week and one month test-retest intervals. J Clin Exp Neuropsychol. 2006;28:1095–1112. doi: 10.1080/13803390500205718.
    1. Kreutzer JS, Seel RT, Marwitz JH. Neurobehavioral Functioning Inventory: NFI. San Antonio, TX: Psychological Corporation; 1999.
    1. Wood RLI, Alderman N, Williams C. Assessment of neurobehavioural disability: a review of existing measures and recommendations for a comprehensive assessment tool. Brain Inj. 2008;22:905–918. doi: 10.1080/02699050802491271.
    1. Kizony R, Katz N. Adapting an immersive virtual reality system for rehabilitation. Comput Animat Virtual Worlds. 2003;14:261–268.
    1. Duckworth J, Wilson P. Embodiment and play in designing an interactive art system for movement rehabilitation. In: Superhuman: Revoultion of the species: RMIT University; 2009. p. 120–37.
    1. Duckworth J, Thomas PR, Shum D, Wilson PH. Designing co-located tabletop interaction for rehabilitation of brain injury. In: International conference of design, user experience, and usability: Springer; 2013. p. 391–400.
    1. Adams IL, Lust JM, Wilson PH, Steenbergen B. Compromised motor control in children with DCD: a deficit in the internal model?—a systematic review. Neurosci Biobehav Rev. 2014;47:225–244. doi: 10.1016/j.neubiorev.2014.08.011.
    1. Levin MF, Snir O, Liebermann DG, Weingarden H, Weiss PL. Virtual reality versus conventional treatment of reaching ability in chronic stroke: clinical feasibility study. Neurol Ther. 2012;1:3. doi: 10.1007/s40120-012-0003-9.
    1. Saposnik Gustavo, Teasell Robert, Mamdani Muhammad, Hall Judith, McIlroy William, Cheung Donna, Thorpe Kevin E., Cohen Leonardo G., Bayley Mark. Effectiveness of Virtual Reality Using Wii Gaming Technology in Stroke Rehabilitation. Stroke. 2010;41(7):1477–1484. doi: 10.1161/STROKEAHA.110.584979.
    1. Sin H, Lee G. Additional virtual reality training using Xbox Kinect in stroke survivors with hemiplegia. Am J Phys Med Rehabil. 2013;92:871–880. doi: 10.1097/PHM.0b013e3182a38e40.
    1. da Silva Cameirão M, SBi B, Duarte E, Verschure PFMJ. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor Neurol Neurosci. 2011;29:287–298.
    1. Yin CW, Sien NY, Ying LA, Chung SF-CM, Tan May Leng D. Virtual reality for upper extremity rehabilitation in early stroke: a pilot randomized controlled trial. Clin Rehabil. 2014;28:1107–1114. doi: 10.1177/0269215514532851.
    1. Crosbie JH, Lennon S, McGoldrick MC, McNeill MDJ, McDonough SM. Virtual reality in the rehabilitation of the arm after hemiplegic stroke: a randomized controlled pilot study. Clin Rehabil. 2012;26:798–806. doi: 10.1177/0269215511434575.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc B. 1995;57:289–300.
    1. Cohen J. Statistical power analysis for the behavioral sciences (2nd Ed) 2. New Jersey: Erlbaum Hilldale; 1988.
    1. Dunn LE, Schweber AB, Manson DK, Lendaris A, Herber C, Marshall RS, Lazar RM. Variability in motor and language recovery during the acute stroke period. Cerebrovasc Dis Extra. 2016;6:12–21. doi: 10.1159/000444149.
    1. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the box and block test of manual dexterity. Am J Occup Ther. 1985;39:386–391. doi: 10.5014/ajot.39.6.386.
    1. Lai SM, Studenski S, Duncan PW, Perera S. Persisting consequences of stroke measured by the stroke impact scale. Stroke. 2002;33:1840–1844. doi: 10.1161/01.STR.0000019289.15440.F2.
    1. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8:741–754. doi: 10.1016/S1474-4422(09)70150-4.
    1. Jokinen H, Melkas S, Ylikoski R, Pohjasvaara T, Kaste M, Erkinjuntti T, Hietanen M. Post-stroke cognitive impairment is common even after successful clinical recovery. Eur J Neurol. 2015;22:1288–1294. doi: 10.1111/ene.12743.
    1. Douiri A, Rudd AG, Wolfe CDA. Prevalence of poststroke cognitive impairment: South London stroke register 1995–2010. Stroke. 2013;44:138–145. doi: 10.1161/STROKEAHA.112.670844.
    1. Tatemichi TK, Desmond DW, Stern Y, Paik M, Sano M, Bagiella E. Cognitive impairment after stroke: frequency, patterns, and relationship to functional abilities. J Neurol Neurosurg Psychiatry. 1994;57:202–207. doi: 10.1136/jnnp.57.2.202.
    1. Wagle J, Farner L, Flekkoy K, Bruun Wyller T, Sandvik L, Fure B, Stensrod B, Engedal K. Early post-stroke cognition in stroke rehabilitation patients predicts functional outcome at 13 months. Dement Geriatr Cogn Disord. 2011;31:379–387. doi: 10.1159/000328970.
    1. Kaelin-Lang A, Sawaki L, Cohen LG. Role of voluntary drive in encoding an elementary motor memory. J Neurophysiol. 2005;93:1099–1103. doi: 10.1152/jn.00143.2004.
    1. Boyd LA, Winstein CJ. Impact of explicit information on implicit motor-sequence learning following middle cerebral artery stroke. Phys Ther. 2003;83:976–989.
    1. Howard MC. A meta-analysis and systematic literature review of virtual reality rehabilitation programs. Comput Hum Behav. 2017;70:317–327. doi: 10.1016/j.chb.2017.01.013.
    1. Broeren J, Bjorkdahl A, Claesson L, Goude D, Lundgren-Nilsson A, Samuelsson H, Blomstrand C, Sunnerhagen KS, Rydmark M. Virtual rehabilitation after stroke. Stud Health Technol Inform. 2008;136:77–82.
    1. Shah N, Basteris A, Amirabdollahian F. Design parameters in multimodal games for rehabilitation. Games Health J. 2014;3:13–20. doi: 10.1089/g4h.2013.0044.
    1. Tse T, Douglas J, Lentin P, Carey L. Measuring participation after stroke: a review of frequently used tools. Arch Phys Med Rehabil. 2013;94:177–192. doi: 10.1016/j.apmr.2012.09.002.
    1. Cumming TB, Packer M, Kramer SF, English C. The prevalence of fatigue after stroke: a systematic review and meta-analysis. Int J Stroke. 2016;11:968–977. doi: 10.1177/1747493016669861.
    1. Harrison RA, Field TS. Post stroke pain: identification, assessment, and therapy. Cerebrovasc Dis. 2015;39:190–201. doi: 10.1159/000375397.
    1. Lange B, Flynn S, Chang CY, Ahmed A, Geng Y, Utsav K, Xu M, Seok D, Cheng S, Rizzo A. Development of an interactive rehabilitation game using the Nintendo® WiiFit™ balance board for people with neurological injury. Proceedings of ICDVRAT, Chile, August. 2010:249–54.
    1. Stolwyk RJ, O'Connell E, Lawson DW, Thrift AG, New PW. Neurobehavioral disability in stroke patients during subacute inpatient rehabilitation: prevalence and biopsychosocial associations. Top Stroke Rehabil. 2018:1–8.
    1. Mitchell AJ, Sheth B, Gill J, Yadegarfar M, Stubbs B, Yadegarfar M, Meader N. Prevalence and predictors of post-stroke mood disorders: a meta-analysis and meta-regression of depression, anxiety and adjustment disorder. Gen Hosp Psychiatry. 2017;47:48–60. doi: 10.1016/j.genhosppsych.2017.04.001.
    1. Thomas SA, Lincoln NB. Factors relating to depression after stroke. Br J Clin Psychol. 2006;45:49–61. doi: 10.1348/014466505X34183.
    1. In TS, Jung KS, Lee SW, Song CH. Virtual reality reflection therapy improves motor recovery and motor function in the upper extremities of people with chronic stroke. J Phys Ther Sci. 2012;24:339–343. doi: 10.1589/jpts.24.339.
    1. Housman SJ, Scott KM, Reinkensmeyer DJ. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair. 2009;23:505–514. doi: 10.1177/1545968308331148.
    1. Kottink AIR, Prange GB, Krabben T, Rietman JS, Buurke JH. Gaming and conventional exercises for improvement of arm function after stroke: a randomized controlled pilot study. Games Health J. 2014;3:184–191. doi: 10.1089/g4h.2014.0026.
    1. Duff M, Chen Y, Cheng L, Liu SM, Blake P, Wolf SL, Rikakis T. Adaptive mixed reality rehabilitation improves quality of reaching movements more than traditional reaching therapy following stroke. Neurorehabil Neural Repair. 2013;27:306–315. doi: 10.1177/1545968312465195.
    1. Kwon J-S, Park M-J, Yoon I-J, Park S-H. Effects of virtual reality on upper extremity function and activities of daily living performance in acute stroke: a double-blind randomized clinical trial. NeuroRehabilitation. 2012;31:379–385.
    1. Aminov A, Rogers JM, Johnstone SJ, Middleton S, Wilson PH. Acute single channel EEG predictors of cognitive function after stroke. PLoS One. 2017;12:e0185841. doi: 10.1371/journal.pone.0185841.
    1. Fu MJ, Knutson JS, Chae J. Stroke rehabilitation using virtual environments. Phys Med Rehabil Clin N Am. 2015;26:747–757. doi: 10.1016/j.pmr.2015.06.001.
    1. Cameirão MS, Pereira F, SBi B. Virtual reality with customized positive stimuli in a cognitive-motor rehabilitation task. In: 2017 international conference on virtual rehabilitation (ICVR); 19–22 June 2017, vol. 2017. p. 1–7.
    1. Faria AL, Cameirao MS, Couras JF, Aguiar JRO, Costa GM, Bermudez IBS. Combined cognitive-motor rehabilitation in virtual reality improves motor outcomes in chronic stroke - a pilot study. Front Psychol. 2018;9:854. doi: 10.3389/fpsyg.2018.00854.
    1. Gamito P, Oliveira J, Coelho C, Morais D, Lopes P, Pacheco J, Brito R, Soares F, Santos N, Barata AF. Cognitive training on stroke patients via virtual reality-based serious games. Disabil Rehabil. 2015;39:385–388. doi: 10.3109/09638288.2014.934925.
    1. Standen P, Threapleton K, Richardson A, Connell L, Brown D, Battersby S, Platts F, Burton A. A low cost virtual reality system for home based rehabilitation of the arm following stroke: a randomised controlled feasibility trial. Clin Rehabil. 2017;31:340–350. doi: 10.1177/0269215516640320.
    1. Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M, Kwakkel G. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9:e87987. doi: 10.1371/journal.pone.0087987.
    1. Hatem SM, Saussez G, Della Faille M, Prist V, Zhang X, Dispa D, Bleyenheuft Y. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci. 2016;10:442. doi: 10.3389/fnhum.2016.00442.
    1. Rogers JM, Foord R, Stolwyk RJ, Wong D, Wilson PH. General and domain-specific effectiveness of cognitive remediation after stroke: systematic literature review and meta-analysis. Neuropsychol Rev. 2018.
    1. Dijkerman C, Lenggenhager B. The body and cognition: the relation between body representations and higher level cognitive and social processes. Cortex. 2018;104:133–139. doi: 10.1016/j.cortex.2018.06.001.
    1. Barsalou LW. Grounded cognition: past, present, and future. Top Cogn Sci. 2010;2:716–724. doi: 10.1111/j.1756-8765.2010.01115.x.
    1. Favate AS, Younger DS. Epidemiology of ischemic stroke. Neurol Clin. 2016;34:967–980. doi: 10.1016/j.ncl.2016.06.013.
    1. Reeves M, Khoury J, Alwell K, Moomaw C, Flaherty M, Woo D, Khatri P, Adeoye O, Ferioli S, Kissela B, Kleindorfer D. Distribution of National Institutes of Health stroke scale in the Cincinnati/northern Kentucky stroke study. Stroke. 2013;44:3211–3213. doi: 10.1161/STROKEAHA.113.002881.
    1. Friedly J, Akuthota V, Amtmann D, Patrick D. Why disability and rehabilitation specialists should lead the way in patient-reported outcomes. Arch Phys Med Rehabil. 2014;95:1419–1422. doi: 10.1016/j.apmr.2014.03.022.
    1. Al Banna M, Redha NA, Abdulla F, Nair B, Donnellan C. Metacognitive function poststroke: a review of definition and assessment. J Neurol Neurosurg Psychiatry. 2016;87:161–166.
    1. Higgins JPT, Altman DG. Assessing risk of bias in included studies. In: Cochrane handbook for systematic review of interventions: Edited by Higgins JPT, Green S; 2008.
    1. Tieri G, Morone G, Paolucci S, Iosa M. Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies. Expert Rev Med Devices. 2018;15:107–117. doi: 10.1080/17434440.2018.1425613.
    1. Hawe RL, Scott SH, Dukelow SP. Taking proportional out of stroke recovery. Stroke. 2018:Strokeaha118023006.
    1. Hope TMH, Friston K, Price CJ, Leff AP, Rotshtein P, Bowman H. Recovery after stroke: not so proportional after all? Brain. 2019;142:15–22. doi: 10.1093/brain/awy302.
    1. Prabhakaran S, Zarahn E, Riley C, Speizer A, Chong JY, Lazar RM, Marshall RS, Krakauer JW. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair. 2008;22:64–71. doi: 10.1177/1545968307305302.
    1. Broeren J, Claesson L, Goude D, Rydmark M, Sunnerhagen KS. Virtual rehabilitation in an activity Centre for community-dwelling persons with stroke. Cerebrovasc Dis. 2008;26:289–296. doi: 10.1159/000149576.
    1. Cameirao MS, Smailagic A, Miao G, Siewiorek DP. Coaching or gaming? Implications of strategy choice for home based stroke rehabilitation. J Neuroeng Rehabil. 2016;13:18. doi: 10.1186/s12984-016-0127-8.
    1. Nijenhuis SM, Prange GB, Amirabdollahian F, Sale P, Infarinato F, Nasr N, Mountain G, Hermens HJ, Stienen AH, Buurke JH, Rietman JS. Feasibility study into self-administered training at home using an arm and hand device with motivational gaming environment in chronic stroke. J Neuroeng Rehabil. 2015;12:89. doi: 10.1186/s12984-015-0080-y.
    1. Acosta AM, Dewald HA, Dewald JP. Pilot study to test effectiveness of video game on reaching performance in stroke. J Rehabil Res Dev. 2011;48:431–444. doi: 10.1682/JRRD.2010.04.0052.

Source: PubMed

3
Tilaa