Effects of Trigger Point Dry Needling for the Management of Knee Pain Syndromes: A Systematic Review and Meta-Analysis

Youssef Rahou-El-Bachiri, Marcos J Navarro-Santana, Guido F Gómez-Chiguano, Joshua A Cleland, Ibai López-de-Uralde-Villanueva, César Fernández-de-Las-Peñas, Ricardo Ortega-Santiago, Gustavo Plaza-Manzano, Youssef Rahou-El-Bachiri, Marcos J Navarro-Santana, Guido F Gómez-Chiguano, Joshua A Cleland, Ibai López-de-Uralde-Villanueva, César Fernández-de-Las-Peñas, Ricardo Ortega-Santiago, Gustavo Plaza-Manzano

Abstract

Background: To evaluate the effect of trigger point dry needling alone or as an adjunct with other interventions on pain and related disability in people with knee pain.

Methods: Several electronic databases were searched for randomized controlled trials where at least one group received dry needling for knee pain. Studies had to include human subjects and collect outcomes on pain and pain-related disability in musculoskeletal knee pain. Data were extracted by two reviewers. The risk of bias was assessed by the Cochrane Guidelines, methodological quality was assessed with the Physiotherapy Evidence Database (PEDro) score, and the quality of evidence by using the GRADE approach. Standardized mean differences (SMD) were calculated.

Results: Ten studies (six patellofemoral pain, two knee osteoarthritis, two post-surgery knee pain) were included. The meta-analysis found moderate effect sizes of dry needling for reducing pain (SMD -0.53, 95% CI -0.87 to -0.19) and improving related disability (SMD -0.58, 95% CI -1.08 to -0.09) as compared to a comparison group at short-term. The main effect was observed for patellofemoral pain (SMD -0.64, 95% CI -1.17 to -0.11). No significant effects were observed at mid- or long-term follow-ups. The risk of bias was generally low, but the heterogenicity and the imprecision of the results downgraded the level of evidence.

Conclusion: Low to moderate evidence suggests a positive effect of trigger point dry needling on pain and related disability in patellofemoral pain, but not knee osteoarthritis or post-surgery knee pain, at short-term. More high-quality trials investigating long-term effects are clearly needed.

Keywords: Dry needling; knee pain; meta-analysis; musculoskeletal pain.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Flow diagram.
Figure 2
Figure 2
Plots of risk of bias of the included studies.
Figure 3
Figure 3
Comparison (standardized mean difference) between the effects of dry needling versus a comparative group on knee pain intensity at (A) short- (B) mid- and (C) long-term. The area of each square is proportional to the study’s weight in the meta-analysis. The horizontal bars represent the confidence intervals of the between-groups difference of the study. The diamond represents the overall meta-analyzed measure of effect (SMD) and the lateral points indicate the confidence intervals for this estimate.
Figure 4
Figure 4
Comparison (standardized mean difference) between the effects of dry needling versus a comparative group on pain-related disability at (A) short- (B) mid- and (C) long-term. The area of each square is proportional to the study’s weight in the meta-analysis. The horizontal bars represent the confidence intervals of the between-groups difference of the study. The diamond represents the overall meta-analyzed measure of effect (SMD) and the lateral points indicate the confidence intervals for this estimate.

References

    1. Calmbach W.L., Hutchens M. Evaluation of patients presenting with knee pain: Part I. History, physical examination, radiographs, and laboratory tests. Am. Fam. Physician. 2003;68:907–912.
    1. Jordan J.M., Helmick C.G., Renner J.B., Luta G., Dragomir A.D., Woodard J., Fang F., Schwartz T.A., Nelson A.E., Abbate L.M. Prevalence of hip symptoms and radiographic and symptomatic hip osteoarthritis in African Americans and Caucasians: The Johnston County Osteoarthritis Project. J. Rheumatol. 2009;36:809–815. doi: 10.3899/jrheum.080677.
    1. Smith B.E., Selfe J., Thacker D., Hendrick P., Bateman M., Moffatt F., Rathleff M.S., Smith T.O., Logan P. Incidence and prevalence of patellofemoral pain: A systematic review and meta-analysis. PLoS ONE. 2018;13:e0190892. doi: 10.1371/journal.pone.0190892.
    1. Boling M., Padua D., Marshall S., Guskiewicz K., Pyne S., Beutler A. Gender differences in the incidence and prevalence of patellofemoral pain syndrome. Scand. J. Med. Sci. Sports. 2010;20:725–730. doi: 10.1111/j.1600-0838.2009.00996.x.
    1. Cross M., Smith E., Hoy D., Nolte S., Ackerman I., Fransen M., Bridgett L., Williams S., Guillemin F., Hill C.L. The global burden of hip and knee osteoarthritis: Estimates from the global burden of disease 2010 study. Ann. Rheum. Dis. 2014;73:1323–1330. doi: 10.1136/annrheumdis-2013-204763.
    1. Madaleno F.O., Santos B.A., Araújo V.L., Oliveira V.C., Resende R.A. Prevalence of knee osteoarthritis in former athletes: A systematic review with meta-analysis. Brazilian J. Phys. Ther. 2018;22:437–451. doi: 10.1016/j.bjpt.2018.03.012.
    1. Osthoff A.-K.R., Juhl C.B., Knittle K., Dagfinrud H., Hurkmans E., Braun J., Schoones J., Vlieland T.P.M.V., Niedermann K. Effects of exercise and physical activity promotion: Meta-analysis informing the 2018 EULAR recommendations for physical activity in people with rheumatoid arthritis, spondyloarthritis and hip/knee osteoarthritis. RMD Open. 2018;4:e000713. doi: 10.1136/rmdopen-2018-000713.
    1. Anwer S., Alghadir A., Zafar H., Brismée J.-M. Effects of orthopaedic manual therapy in knee osteoarthritis: A systematic review and meta-analysis. Physiotherapy. 2018;104:264–276. doi: 10.1016/j.physio.2018.05.003.
    1. Neal B.S., Lack S.D., Lankhorst N.E., Raye A., Morrissey D., van Middelkoop M. Risk factors for patellofemoral pain: A systematic review and meta-analysis. Br. J. Sport Med. 2019;53:270–281. doi: 10.1136/bjsports-2017-098890.
    1. Øiestad B.E., Juhl C.B., Eitzen I., Thorlund J.B. Knee extensor muscle weakness is a risk factor for development of knee osteoarthritis. A systematic review and meta-analysis. Osteoarthr. Cartil. 2015;23:171–177. doi: 10.1016/j.joca.2014.10.008.
    1. Dor A., Kalichman L. A myofascial component of pain in knee osteoarthritis. J. Bodyw. Mov. Ther. 2017;21:642–647. doi: 10.1016/j.jbmt.2017.03.025.
    1. Simons D.G., Travell J.G., Simon L. Myofascial Pain and Dysfunction. The Trigger Point Manual. 3rd ed. Wolters Kluwer; Philadelphia, PA, USA: 2019.
    1. Ge H.-Y., Arendt-Nielsen L., Madeleine P. Accelerated muscle fatigability of latent myofascial trigger points in humans. Pain Med. 2012;13:957–964. doi: 10.1111/j.1526-4637.2012.01416.x.
    1. Ibarra J.M., Ge H.-Y., Wang C., Vizcaíno V.M., Graven-Nielsen T., Arendt-Nielsen L. Latent myofascial trigger points are associated with an increased antagonistic muscle activity during agonist muscle contraction. J. Pain. 2011;12:1282–1288. doi: 10.1016/j.jpain.2011.09.005.
    1. Roach S., Sorenson E., Headley B., San Juan J.G. Prevalence of myofascial trigger points in the hip in patellofemoral pain. Arch. Phys. Med. Rehabil. 2013;94:522–526. doi: 10.1016/j.apmr.2012.10.022.
    1. Sánchez-Romero E.A., Pecos-Martín D., Calvo-Lobo C., García-Jiménez D., Ochoa-Sáez V., Burgos-Caballero V., Fernández-Carnero J. Clinical features and myofascial pain syndrome in older adults with knee osteoarthritis by sex and age distribution: A cross-sectional study. Knee. 2019;26:165–173. doi: 10.1016/j.knee.2018.09.011.
    1. Dommerholt J., Fernandez-de-las Peñas C. Trigger Point Dry Needling: An Evidence and Clinical-Based Approach. 2nd ed. Elsevier, Churchill Livingstone; London, UK: 2019.
    1. APTA . Description of Dry Needling in Clinical Practice: An Educational Resource Paper. APTA Public Policy, Pract Prof Aff Unit; Alexandria, VA, USA: 2013.
    1. Gattie E., Cleland J.A., Snodgrass S. The Effectiveness of Trigger Point Dry Needling for Musculoskeletal Conditions by Physical Therapists: A Systematic Review and Meta-analysis. J. Orthop. Sport Phys. Ther. 2017;47:133–149. doi: 10.2519/jospt.2017.7096.
    1. Morihisa R., Eskew J., McNamara A., Young J. Dry needling in subjects with muscular trigger points in the lower quarter: A systematic review. Int. J. Sports Phys. Ther. 2016;11:1.
    1. Collins N.J., Barton C.J., van Middelkoop M., Callaghan M.J., Rathleff M.S., Vicenzino B.T., Davis I.S., Powers C.M., Macri E.M., Hart H.F., et al. 2018 Consensus statement on exercise therapy and physical interventions (orthoses, taping and manual therapy) to treat patellofemoral pain: Recommendations from the 5th International Patellofemoral Pain Research Retreat, Gold Coast, Australia, 2017. Br. J. Sports Med. 2018;52:1170–1178. doi: 10.1136/bjsports-2018-099397.
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G., Group T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097.
    1. Higgins J.P.T., Altman D.G., Gøtzsche P.C., Jüni P., Moher D., Oxman A.D. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.
    1. Maher C.G., Sherrington C., Herbert R.D., Moseley A.M., Elkins M. Reliability of the PEDro Scale for Rating Quality of Randomized. Phys. Ther. 2003;83:713–721. doi: 10.1093/ptj/83.8.713.
    1. Schünemann H.J., Oxman A.D., Brozek J., Glasziou P., Bossuyt P., Chang S., Muti P., Jaeschke R., Guyatt G.H. GRADE: Assessing the quality of evidence for diagnostic recommendations. BMJ Evid. Based Med. 2008;13:162–163. doi: 10.1136/ebm.13.6.162-a.
    1. Austin T.M., Richter R.R., Sebelski C.A. Introduction to the GRADE approach for guideline development: Considerations for physical therapist practice. Phys. Ther. 2014;94:1652–1659. doi: 10.2522/ptj.20130627.
    1. Wan X., Wang W., Liu J., Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014;14:1–13. doi: 10.1186/1471-2288-14-135.
    1. Luo D., Wan X., Liu J., Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat. Methods Med. Res. 2018;27:1785–1805. doi: 10.1177/0962280216669183.
    1. Deeks J.J., Higgins J.P.T., Altman D.G, editors. Chapter 9: Analyzing Data and Undertaking Meta-Analyses. [(accessed on 1 May 2020)];Cochrane Handbook for Systematic Reviews of Interventions. Version 5.2.0 (Updated June 2017) Available online: .
    1. Dragoo J.L., Wasterlain A.S., Braun H.J., Nead K.T. Platelet-rich plasma as a treatment for patellar tendinopathy: A double-blind, randomized controlled trial. Am. J. Sports Med. 2014;42:610–618. doi: 10.1177/0363546513518416.
    1. De-la-Llave-Rincón A.I., Loa-Barbero B., Palacios-Ceña M., Salom-Moreno J., Ortega-Santiago R., Ambite-Quesada S., Arias-Buría J.L., Fernandez-De-Las-Peñas C. Manual therapy combined with dry needling for the management of patients with patellofemoral pain syndrome. Man. Ther. 2016;25:e82. doi: 10.1016/j.math.2016.05.135.
    1. Dragoo J., Wasterlain A. Double-blind randomized controlled trial of platelet-rich-plasma versus dry needling for treatment of patellar tendinosis. Arthrosc. J. Arthrosc. Relat. Surg. 2011;27:e118–e119. doi: 10.1016/j.arthro.2011.08.079.
    1. Wasterlain A.S., Braun H.J., Dragoo J.L. Platelet-rich plasma as a treatment for patellar tendinopathy: A double-blind randomized controlled trial. Arthrosc. J. Arthrosc. Relat. Surg. 2012;28:e31–e32. doi: 10.1016/j.arthro.2012.04.118.
    1. Sanchez-Romero E.A., Pecos-Martin D., Calvo-Lobo C., Ochoa-Saez V., Burgos-Caballero V., Fernandez-Carnero J. Effects of dry needling in an exercise program for older adults with knee osteoarthritis: A pilot clinical trial. Medicine. 2018;97:e11255. doi: 10.1097/MD.0000000000011255.
    1. James S.L.J., Ali K., Pocock C., Robertson C., Walter J., Bell J., Connell D., Bradshaw C. Ultrasound guided dry needling and autologous blood injection for patellar tendinosis. Br. J. Sports Med. 2007;41:518–521. doi: 10.1136/bjsm.2006.034686.
    1. Nunez-Cortes R., Cruz-Montecinos C., Vasquez-Rosel A., Paredes-Molina O., Cuesta-Vargas A. Dry Needling Combined with Physical Therapy in Patients with Chronic Postsurgical Pain Following Total Knee Arthroplasty: A Case Series. J. Orthop. Sports Phys. Ther. 2017;47:209–216. doi: 10.2519/jospt.2017.7089.
    1. Ortega-Cebrian S., Luchini N., Whiteley R. Dry needling: Effects on activation and passive mechanical properties of the quadriceps, pain and range during late stage rehabilitation of ACL reconstructed patients. Phys. Ther. Sport. 2016;21:57–62. doi: 10.1016/j.ptsp.2016.02.001.
    1. Da Graca-Tarragó M., Deitos A., Brietzke A.P., Torres I.L.S., Stefani L.C., Fregni F., Caumo W. Electrical intramuscular stimulation in osteoarthritis enhances the inhibitory systems in pain processing at cortical and cortical spinal system. Pain Med. 2016;17:877–891. doi: 10.1111/pme.12930.
    1. Dunning J., Butts R., Young I., Mourad F., Galante V., Bliton P., Tanner M., Fernandez-de-las-Penas C. Periosteal Electrical Dry Needling as an Adjunct to Exercise and Manual Therapy for Knee Osteoarthritis: A Multi-Center Randomized Clinical Trial. Clin. J. Pain. 2018;34:1149–1158. doi: 10.1097/AJP.0000000000000634.
    1. Abyaneh H.M., Mosallanezhad Z., Mohammadalizade H., Bakhshi E., Vahedi G., Nourbakhsh M.R. Physiotherapy with and without superficial dry needling affects pain and muscle strength in patients with patellofemoral pain syndrome. Iran. Rehabil. J. 2016;14:23–30.
    1. Espí-López G.V., Serra-Añó P., Vicent-Ferrando J., Sánchez-Moreno-Giner M., Arias-Buría J.L., Cleland J., Fernández-de-las-Peñas C. Effectiveness of Inclusion of Dry Needling in a Multimodal Therapy Program for Patellofemoral Pain: A Randomized Parallel-Group Trial. J. Orthop. Sport Phys. Ther. 2017;47:392–401. doi: 10.2519/jospt.2017.7389.
    1. Itoh K., Hirota S., Katsumi Y., Ochi H., Kitakoji H. Trigger point acupuncture for treatment of knee osteoarthritis—A preliminary RCT for a pragmatic trial. Acupunct. Med. 2008;26:17–26. doi: 10.1136/aim.26.1.17.
    1. Mason J.S., Crowell M., Dolbeer J., Morris J., Terry A., Koppenhaver S., Goss D.L. The effectiveness of dry needling and stretching vs. stretching alone on hamstring flexibility in patients with knee pain: A randomized controlled trial. Int. J. Sports Phys. Ther. 2016;11:672–683.
    1. Mayoral O., Salvat I., Martin M.T., Martin S., Santiago J., Cotarelo J., Rodriguez C. Efficacy of myofascial trigger point dry needling in the prevention of pain after total knee arthroplasty: A randomized, double-blinded, placebo-controlled trial. Evid. Based Complement. Alternat. Med. 2013;2013:694941. doi: 10.1155/2013/694941.
    1. Sanchez Romero E.A., Fernandez-Carnero J., Calvo-Lobo C., Ochoa Saez V., Burgos Caballero V., Pecos-Martin D. Is a Combination of Exercise and Dry Needling Effective for Knee OA? Pain Med. 2020;21:349–363. doi: 10.1093/pm/pnz036.
    1. Sutlive T.G., Golden A., King K., Morris W.B., Morrison J.E., Moore J.H., Koppenhaver S. Short-term effects of trigger point dry needling on pain and disability in subjects with patellofemoral pain syndrome. Int. J. Sports Phys. Ther. 2018;13:462–473. doi: 10.26603/ijspt20180462.
    1. Velazquez-Saornil J., Ruiz-Ruiz B., Rodriguez-Sanz D., Romero-Morales C., Lopez-Lopez D., Calvo-Lobo C. Efficacy of quadriceps vastus medialis dry needling in a rehabilitation protocol after surgical reconstruction of complete anterior cruciate ligament rupture. Medicine. 2017;96:e6726. doi: 10.1097/MD.0000000000006726.
    1. Zarei H., Bervis S., Piroozi S., Motealleh A. Added Value of Gluteus Medius and Quadratus Lumborum Dry Needling in Improving Knee Pain and Function in Female Athletes with Patellofemoral Pain Syndrome: A Randomized Clinical Trial. Arch. Phys. Med. Rehabil. 2020;101:265–274. doi: 10.1016/j.apmr.2019.07.009.
    1. Patel Z., Srivastava A., Shyam A., Sancheti P. Immediate Effect of Dry Needling Vs Ultrasound on Releasing Trigger Points in Quadriceps in Patients with Patello-Femoral Pain Syndrome on Pain. Int. J. Physiother. Res. 2019;7:3287–3294. doi: 10.16965/ijpr.2019.182.
    1. Rogan S., Haehni M., Luijckx E., Dealer J., Reuteler S., Taeymans J. Effects of Hip Abductor Muscles Exercises on Pain and Function in Patients with Patellofemoral Pain: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2019;33:3174–3187. doi: 10.1519/JSC.0000000000002658.
    1. Giles L.S., Webster K.E., McClelland J.A., Cook J. Does quadriceps atrophy exist in individuals with patellofemoral pain? A systematic literature review with meta-analysis. J. Orthop. Sport. Phys. Ther. 2013;43:766–776. doi: 10.2519/jospt.2013.4833.
    1. Sonnery-Cottet B., Saithna A., Quelard B., Daggett M., Borade A., Ouanezar H., Thaunat M., Blakeney W.G. Arthrogenic muscle inhibition after ACL reconstruction: A scoping review of the efficacy of interventions. Br. J. Sport Med. 2019;53:289–298. doi: 10.1136/bjsports-2017-098401.
    1. Rice D.A., McNair P.J., Lewis G.N., Dalbeth N. Quadriceps arthrogenic muscle inhibition: The effects of experimental knee joint effusion on motor cortex excitability. Arthritis Res. Ther. 2014;16:502. doi: 10.1186/s13075-014-0502-4.
    1. Pedroso M.G., de Almeida A.C., Aily J.B., de Noronha M., Mattiello S.M. Fatty infiltration in the thigh muscles in knee osteoarthritis: A systematic review and meta-analysis. Rheumatol. Int. 2019;39:627–635. doi: 10.1007/s00296-019-04271-2.
    1. Hislop A.C., Collins N.J., Tucker K., Deasy M., Semciw A.I. Does adding hip exercises to quadriceps exercises result in superior outcomes in pain, function and quality of life for people with knee osteoarthritis? A systematic review and meta-analysis. Br. J. Sports Med. 2020;54:263–271. doi: 10.1136/bjsports-2018-099683.
    1. French H.P., Smart K.M., Doyle F. Prevalence of neuropathic pain in knee or hip osteoarthritis: A systematic review and meta-analysis. Semin. Arthritis Rheum. 2017;47:1–8. doi: 10.1016/j.semarthrit.2017.02.008.
    1. Boyce D., Wempe H., Campbell C., Fuehne S., Zylstra E., Smith G., Wingard C., Jones R. Adverse events aossciated with therapeutic dry needling. Int. J. Sports Phys. Ther. 2020;15:103–113. doi: 10.26603/ijspt20200103.
    1. Kim D.C., Glenzer S., Johnson A., Nimityongskul P. Deep Infection Following Dry Needling in a Young Athlete. J. Bone Jt. Surg. 2018;8:e73. doi: 10.2106/JBJS.CC.18.00097.
    1. Moody P.W., Fehring T.K., Springer B.D. Periarticular needle-based therapies can cause periprosthetic knee infections. Arthroplast. Today. 2020;6:241–245. doi: 10.1016/j.artd.2020.02.006.
    1. Braithwaite F.A., Walters J.L., Li L.S.K., Moseley G.L., Williams M.T., McEvoy M.P. Blinding Strategies in Dry Needling Trials: Systematic Review and Meta-Analysis. Phys. Ther. 2019;99:1461–1480. doi: 10.1093/ptj/pzz111.
    1. Krey D., Borchers J., McCamey K. Tendon needling for treatment of tendinopathy: A systematic review. Phys. Sportsmed. 2015;43:80–86. doi: 10.1080/00913847.2015.1004296.
    1. Mendonça L.D.M., Leite H.R., Zwerver J., Henschke N., Branco G., Oliveira V.C. How strong is the evidence that conservative treatment reduces pain and improves function in individuals with patellar tendinopathy? A systematic review of randomised controlled trials including GRADE recommendations. Br. J. Sports Med. 2020;54:87–93. doi: 10.1136/bjsports-2018-099747.

Source: PubMed

3
Tilaa