Anorexia, Hypertension, Pneumothorax, and Hypothyroidism: Potential Signs of Improved Clinical Outcome Following Apatinib in Advanced Osteosarcoma

Lu Xie, Jie Xu, Xin Sun, Xiaodong Tang, Taiqiang Yan, Rongli Yang, Wei Guo, Lu Xie, Jie Xu, Xin Sun, Xiaodong Tang, Taiqiang Yan, Rongli Yang, Wei Guo

Abstract

Aim: Apatinib, a specific tyrosine kinase inhibitor (TKI) that targets mainly vascular endothelial growth factor receptor-2 (VEGFR-2) as well as Ret, c-Kit and c-Src, has been assessed in patients with advanced osteosarcoma (phase II), the primary report of which has been published in PMID 30559126. This sub-study explored the potential signs of Adverse Events (AEs) for apatinib-treated osteosarcoma.

Methods: Participants with advanced osteosarcoma progressing upon chemotherapy received apatinib until disease progression or unacceptable toxicity. Toxicities, progression-free survival (PFS), and clinical benefit rate (CBR) following treatment were evaluated.

Results: Of the 41 patients recruited to the study, 37 received treatment and constituted the safety population. At data cut-off (December 30, 2017), median follow-up for safety was 7.37 (IQR, 6.33-11.07) months. The most common grade 3-4 AEs were pneumothorax (16.22%), wound dehiscence (10.81%), proteinuria (8.11%), diarrhea (8.11%), and skin reaction (8.11%). Only hypertension was an independent predictive factor for both PFS (hazard ratio [HR], 0.44; P = 0.07) and CBR (P = 0.07). Anorexia was also significantly related to a longer PFS in a Cox regression model (HR, 0.35; P =0.01). For CBR, pneumothorax and hypothyroidism showed more clinical benefit (P = 0.07 and 0.00, respectively).

Conclusion: The results of this study suggest that anorexia, hypertension, pneumothorax, and hypothyroidism might be markers for a favorable clinical outcome following apatinib-treated refractory osteosarcoma.

Keywords: apatinib; osteosarcoma; prognosis.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

© 2020 Xie et al.

Figures

Figure 1
Figure 1
The percentage of participants who had AEs of interest and the median (95% CI) for the onset of first incidence of AEs of interest (any grade) in days.
Figure 2
Figure 2
Forest plots of HRs for disease progression in different AE subgroups.
Figure 3
Figure 3
Kaplan–Meier curves for PFS from patients who did or did not have anorexia.
Figure 4
Figure 4
Kaplan–Meier curves for PFS from patients who did or did not have hypertension.

References

    1. Xie L, Ji T, Guo W. Anti-angiogenesis target therapy for advanced osteosarcoma. Oncol Rep. 2017;38(2):625–636. doi:10.3892/or.2017.5735
    1. Grignani G, Palmerini E, Ferraresi V, et al. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised Phase 2 clinical trial. Lancet Oncol. 2015;16(1):98–107. doi:10.1016/S1470-2045(14)71136-2
    1. Grignani G, Palmerini E, Dileo P, et al. A Phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian sarcoma group study. Ann Oncol. 2011;23(2):508–516. doi:10.1093/annonc/mdr151
    1. Li F, Liao Z, Zhang C, et al. Apatinib as targeted therapy for sarcoma. Oncotarget. 2018;9(36):24548–24560. doi:10.18632/oncotarget.v9i36
    1. Xie L, Guo W, Wang Y, Yan T, Ji T, Xu J. Apatinib for advanced sarcoma: results from multiple institutions’ off-label use in China. BMC Cancer. 2018;18(1):396. doi:10.1186/s12885-018-4303-z
    1. Zhu B, Li J, Xie Q, Diao L, Gai L, Yang W. Efficacy and safety of apatinib monotherapy in advanced bone and soft tissue sarcoma: an observational study. Cancer Biol Ther. 2018;19(3):198–204. doi:10.1080/15384047.2017.1416275
    1. Li F, Liao Z, Zhao J, et al. Efficacy and safety of apatinib in stage IV sarcomas: experience of a major sarcoma center in China. Oncotarget. 2017;8(38):64471–64480. doi:10.18632/oncotarget.16293
    1. Lee HJ, Moon JY, Baek SW. Is treatment-emergent toxicity a sign of efficacy of apatinib in gastric cancer? J Clin Oncol. 2016;34(31):3823. doi:10.1200/JCO.2016.68.8663
    1. Zhang S. Problematic analysis and inadequate toxicity data in Phase III apatinib trial in gastric cancer. J Clin Oncol. 2016;34(31):3821. doi:10.1200/JCO.2016.67.3889
    1. Li J, Qin S, Xu J, et al. Apatinib for chemotherapy-refractory advanced metastatic gastric cancer: results from a randomized, placebo-controlled, parallel-arm, phase II trial. J Clin Oncol. 2013;31(26):3219–3225. doi:10.1200/JCO.2013.48.8585
    1. Yamamoto K, Mizumoto A, Nishimura K, et al. Association of toxicity of sorafenib and sunitinib for human keratinocytes with inhibition of signal transduction and activator of transcription 3 (STAT3). PLoS One. 2014;9(7):e102110. doi:10.1371/journal.pone.0102110
    1. Poprach A, Pavlik T, Melichar B, et al. Skin toxicity and efficacy of sunitinib and sorafenib in metastatic renal cell carcinoma: a national registry-based study. Ann Oncol. 2012;23(12):3137–3143. doi:10.1093/annonc/mds145
    1. Guevremont C, Alasker A, Karakiewicz PI. Management of sorafenib, sunitinib, and temsirolimus toxicity in metastatic renal cell carcinoma. Curr Opin Support Palliat Care. 2009;3(3):170–179. doi:10.1097/SPC.0b013e32832e4681
    1. Schmidinger M, Zielinski CC, Vogl UM, et al. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2008;26(32):5204–5212. doi:10.1200/JCO.2007.15.6331
    1. Dreno B, Ribas A, Larkin J, et al. Incidence, course, and management of toxicities associated with cobimetinib in combination with vemurafenib in the coBRIM study. Ann Oncol. 2017;28(5):1137–1144. doi:10.1093/annonc/mdx040
    1. Jain L, Sissung TM, Danesi R, et al. Hypertension and hand-foot skin reactions related to VEGFR2 genotype and improved clinical outcome following bevacizumab and sorafenib. J Exp Clin Cancer Res. 2010;29:95. doi:10.1186/1756-9966-29-95
    1. Interiano RB, McCarville MB, Wu J, Davidoff AM, Sandoval J, Navid F. Pneumothorax as a complication of combination antiangiogenic therapy in children and young adults with refractory/recurrent solid tumors. J Pediatr Surg. 2015;50(9):1484–1489. doi:10.1016/j.jpedsurg.2015.01.005
    1. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–247. doi:10.1016/j.ejca.2008.10.026
    1. National Institutes of Health NCI. Common terminology criteria for adverse events (CTCAE) Version 4.0. Common Terminology Criteria for Adverse Events (CTCAE); 2009: 1–196.
    1. Mols F, Husson O, Oudejans M, Vlooswijk C, Horevoorts N, van de Poll-franse LV. Reference data of the EORTC QLQ-C30 questionnaire: five consecutive annual assessments of approximately 2000 representative Dutch men and women. Acta Oncol. 2018;57:1–11.
    1. Taarnhoj GA, Kennedy FR, Absolom KL, et al. Comparison of EORTC QLQ-C30 and PRO-CTCAE questionnaires on six symptom items. J Pain Symptom Manage. 2018;56(3):421–429. doi:10.1016/j.jpainsymman.2018.05.017
    1. Wallwiener M, Matthies L, Simoes E, et al. Reliability of an e-PRO tool of EORTC QLQ-C30 for measurement of health-related quality of life in patients with breast cancer: prospective randomized trial. J Med Internet Res. 2017;19(9):e322. doi:10.2196/jmir.8210
    1. Rosas S, Paco M, Lemos C, Pinho T. Comparison between the visual analog scale and the numerical rating scale in the perception of esthetics and pain. Int Orthod. 2017;15(4):543–560.
    1. Tsze DS, von Baeyer CL, Pahalyants V, Dayan PS. Validity and reliability of the verbal numerical rating scale for children aged 4 to 17 years with acute pain. Ann Emerg Med. 2018;71(6):691–702. doi:10.1016/j.annemergmed.2017.09.009
    1. Agharanya JC. Clinical usefulness of ELISA technique in the assessment of thyroid function. West Afr J Med. 1990;9(4):258–263.
    1. Huang P, Ou AH, Piantadosi S, Tan M. Formulating appropriate statistical hypotheses for treatment comparison in clinical trial design and analysis. Contemp Clin Trials Commun. 2014;39(2):294–302. doi:10.1016/j.cct.2014.09.005
    1. Xie L, Xu J, Sun X, et al. Apatinib for advanced osteosarcoma after failure of standard multimodal therapy: an open label phase 2 clinical trial. Oncologist. 2019;24:e542–e550. doi:10.1634/theoncologist.2018-0542
    1. Agulnik M, Attia S. Growing role of regorafenib in the treatment of patients with sarcoma. Target Oncol. 2018;13:1–6.
    1. Healey JH. Regorafenib: efficacy in multiple refractory sarcoma types. Lancet Oncol. 2016;17(12):1633–1634. doi:10.1016/S1470-2045(16)30509-5
    1. Beuselinck B, Karadimou A, Lambrechts D, et al. Single-nucleotide polymorphisms associated with outcome in metastatic renal cell carcinoma treated with sunitinib. Br J Cancer. 2013;108(4):887–900. doi:10.1038/bjc.2012.548
    1. Miles DW, de Haas SL, Dirix LY, et al. Biomarker results from the AVADO Phase 3 trial of first-line bevacizumab plus docetaxel for HER2-negative metastatic breast cancer. Br J Cancer. 2013;108(5):1052–1060. doi:10.1038/bjc.2013.69
    1. Schneider BP, Wang M, Radovich M, et al. Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J Clin Oncol. 2008;26(28):4672–4678. doi:10.1200/JCO.2008.16.1612
    1. Fan M, Zhang J, Wang Z, et al. Phosphorylated VEGFR2 and hypertension: potential biomarkers to indicate VEGF-dependency of advanced breast cancer in anti-angiogenic therapy. Breast Cancer Res Treat. 2014;143(1):141–151. doi:10.1007/s10549-013-2793-6
    1. Schmidinger M, Vogl UM, Bojic M, et al. Hypothyroidism in patients with renal cell carcinoma: blessing or curse? Cancer. 2011;117(3):534–544. doi:10.1002/cncr.v117.3
    1. Baldazzi V, Tassi R, Lapini A, Santomaggio C, Carini M, Mazzanti R. The impact of sunitinib-induced hypothyroidism on progression-free survival of metastatic renal cancer patients: a prospective single-center study. Urol Oncol. 2012;30(5):704–710. doi:10.1016/j.urolonc.2010.07.015
    1. Shinohara N, Takahashi M, Kamishima T, et al. The incidence and mechanism of sunitinib-induced thyroid atrophy in patients with metastatic renal cell carcinoma. Br J Cancer. 2011;104(2):241–247. doi:10.1038/sj.bjc.6606029
    1. Makita N, Iiri T. Tyrosine kinase inhibitor-induced thyroid disorders: a review and hypothesis. Thyroid. 2013;23(2):151–159. doi:10.1089/thy.2012.0456
    1. Robinson ES, Matulonis UA, Ivy P, et al. Rapid development of hypertension and proteinuria with cediranib, an oral vascular endothelial growth factor receptor inhibitor. Clin J Am Soc Nephrol. 2010;5(3):477–483. doi:10.2215/CJN.08111109
    1. Horowitz JR, Rivard A, van der Zee R, et al. Vascular endothelial growth factor/vascular permeability factor produces nitric oxide-dependent hypotension. Evidence for a maintenance role in quiescent adult endothelium. Arterioscler Thromb Vasc Biol. 1997;17(11):2793–2800. doi:10.1161/01.ATV.17.11.2793
    1. Facemire CS, Nixon AB, Griffiths R, Hurwitz H, Coffman TM. Vascular endothelial growth factor receptor 2 controls blood pressure by regulating nitric oxide synthase expression. Hypertension. 2009;54(3):652–658. doi:10.1161/HYPERTENSIONAHA.109.129973

Source: PubMed

3
Tilaa