Effects of a Massage Protocol in Tensiomyographic and Myotonometric Proprieties

Albert Pérez-Bellmunt, Noé Labata-Lezaun, Luis Llurda-Almuzara, Jacobo Rodríguez-Sanz, Vanessa González-Rueda, Elena Bueno-Gracia, Derya Celik, Carlos López-de-Celis, Albert Pérez-Bellmunt, Noé Labata-Lezaun, Luis Llurda-Almuzara, Jacobo Rodríguez-Sanz, Vanessa González-Rueda, Elena Bueno-Gracia, Derya Celik, Carlos López-de-Celis

Abstract

Background: Pre-competition massage is usually used to improve athletic performance and reduce risk of injury. Despite its usual use, the effects of pre-competition massage on neuromuscular function have barely been studied. The aim of this study is to evaluate the effects of the pre-competition massage over the gastrocnemius neuromuscular function.

Method: The study is a quasi-experimental clinical trial thirty healthy athletes were enrolled in the study. Subjects received an intervention in one leg (experimental), consisting of a massage, and no intervention in the opposite leg (control). From all values of neuromuscular function, the following were analyzed: contraction time (Tc) and maximal displacement (Dm) by tensiomyography, and stiffness and tone by myotonometry.

Results: Main effects of pre-competition massage on neuromuscular function include a significant (p < 0.05) increase in Tc and Dm variables, as well as a reduction in stiffness and tone.

Conclusion: Data shows an increase in Tc and maximal radial displacement (Dm) variables, as well as a reduction in stiffness and tone. More quality studies are needed to draw clear conclusions about the effects of pre-competition massage.

Trial registration: ClinicalTrials.gov NCT03941067.

Keywords: athletic performance; massage; muscle tonus; musculoskeletal manipulations; physical therapy; sport.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(a) Tensiomyography; (b) Myotonometry.

References

    1. Callaghan M.J. The role of massage in the management of the athlete: A review. Br. J. Sports Med. 1993;27:28–33. doi: 10.1136/bjsm.27.1.28.
    1. Goats G.C. Massage—The scientific basis of an ancient art: Part 1. The techniques. Br. J. Sports Med. 1994;28:149–152. doi: 10.1136/bjsm.28.3.149.
    1. Cassar M.-P. Handbook of Clinical Massage: A Complete Guide for Students and Professionals. Churchill Livingstone; London, UK: 2004.
    1. Draper D.O., Tessier D.G. Sports Massage: An Overview. Athl. Ther. Today. 2005;10:67–69. doi: 10.1123/att.10.5.67.
    1. Bishop D. Warm Up I: Potential mechanisms and the effects of passive warm up on exercise performance. Sport Med. 2003;33:439–454. doi: 10.2165/00007256-200333060-00005.
    1. Weerapong P., Hume P.A., Kolt G.S. The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports Med. 2005;35:235–256. doi: 10.2165/00007256-200535030-00004.
    1. Brooks C.P., Woodruff L.D., Wright L.L., Donatelli R. The immediate effects of manual massage on power-grip performance after maximal exercise in healthy adults. J. Altern. Complement. Med. 2005;11:1093–1101. doi: 10.1089/acm.2005.11.1093.
    1. McKechnie G.J., Young W.B., Behm D.G. Acute effects of two massage techniques on ankle joint flexibility and power of the plantar flexors. J. Sports Sci. Med. 2007;6:498–504.
    1. Hopper D., Conneely M., Chromiak F., Canini E., Berggren J., Briffa K. Evaluation of the effect of two massage techniques on hamstring muscle length in competitive female hockey players. Phys. Ther. Sport. 2005;6:137–145. doi: 10.1016/j.ptsp.2005.04.003.
    1. Zainuddin Z., Newton M., Sacco P., Nosaka K. Effects of massage on delayed-onset muscle soreness, swelling, and recovery of muscle function. J. Athl. Train. 2005;40:174–180.
    1. Mauntel T.C., Clark M.A., Padua D.A. Effectiveness of myofascial release therapies on physical performance measurements: A systematic review. Athl. Train. Sports Health Care. 2014;6:189–196. doi: 10.3928/19425864-20140717-02.
    1. Lanza R., Langer R., Vacanti J., Atala A. Principles of Tissue Engineering. Elsevier Inc.; London, UK: 2014.
    1. Hernández-Bule M.L., Paíno C.L., Trillo M.Á., Úbeda A. Electric stimulation at 448 kHz promotes proliferation of human mesenchymal stem cells. Cell. Physiol. Biochem. 2014;34:1741–1755. doi: 10.1159/000366375.
    1. Rodrigues L.A.M., Rocha C., Ferreira H.T., Silva H.N. Lower limb massage in humans increases local perfusion and impacts systemic hemodynamics. J. Appl. Physiol. 2020;128:1217–1226. doi: 10.1152/japplphysiol.00437.2019.
    1. Moran R.N., Hauth J.M., Rabena R. The effect of massage on acceleration and sprint performance in track & field athletes. Complement. Ther. Clin. Pract. 2018;30:1–5. doi: 10.1016/j.ctcp.2017.10.010.
    1. Labata-Lezaun N., López-De-Celis C., Llurda-Almuzara L., González-Rueda V., Cadellans-Arróniz A., Pérez-Bellmunt A. Correlation between maximal radial muscle displacement and stiffness in gastrocnemius muscle. Physiol. Meas. 2020;41:125013. doi: 10.1088/1361-6579/abcdf4.
    1. Llurda-Almuzara L., Pérez-Bellmunt A., López-De-Celis C., Aiguadé R., Seijas R., Casasayas-Cos O., Labata-Lezaun N., Alvarez P. Normative data and correlation between dynamic knee valgus and neuromuscular response among healthy active males: A cross-sectional study. Sci. Rep. 2020;10:17206. doi: 10.1038/s41598-020-74177-8.
    1. Pérez-Bellmunt A., Llurda-Almuzara L., Simon M., Navarro R., Casasayas O., López-de-Celis C. Review article. Neuromuscular response what is it and how to measure it? Phys. Med. Rehabil. J. 2019;2:118.
    1. Bailey L. Parameters representing muscle tone, elasticity and stiffness of biceps brachii in healthy older males: Symmetry and within-session reliability using the MyotonPRO. J. Neurol. Disord. 2013;1:1–7. doi: 10.4172/2329-6895.1000116.
    1. Lohr C., Braumann K.-M., Reer R., Schroeder J., Schmidt T. Reliability of tensiomyography and myotonometry in detecting mechanical and contractile characteristics of the lumbar erector spinae in healthy volunteers. Eur. J. Appl. Physiol. 2018;118:1349–1359. doi: 10.1007/s00421-018-3867-2.
    1. Mooney K., Warner M., Stokes M. Symmetry and within-session reliability of mechanical properties of biceps brachii muscles in healthy young adult males using the MyotonPRO device. Work. Pap. Health Sci. 2013;1:1–11.
    1. Ditroilo M., Hunter A.M., Haslam S., De Vito G. The effectiveness of two novel techniques in establishing the mechanical and contractile responses of biceps femoris. Physiol. Meas. 2011;32:1315–1326. doi: 10.1088/0967-3334/32/8/020.
    1. García-García O., Cuba-Dorado A., Álvarez-Yates T., Carballo-López J., Iglesias-Caamaño M. Clinical utility of tensiomyography for muscle function analysis in athletes. Open Access J. Sports Med. 2019;10:49–69. doi: 10.2147/OAJSM.S161485.
    1. Wisloff U., Castagna C., Helgerud J., Jones R., Hoff J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br. J. Sports Med. 2004;38:285–288. doi: 10.1136/bjsm.2002.002071.
    1. Vescovi J.D., McGuigan M.R. Relationships between sprinting, agility, and jump ability in female athletes. J. Sports Sci. 2008;26:97–107. doi: 10.1080/02640410701348644.
    1. Young W., Wilson G., Byrne C. Relationship between strength qualties and performance in standing and run-up vertical jumps. J. Sports Med. Phys. Fitness. 1999;39:285–293.
    1. Cook R.J., Dickens B.M., Fathalla M.F. World Medical Association Declaration of Helsinki. JAMA. 2013;310:2191. doi: 10.1001/jama.2013.281053.
    1. Bell M.L., Whitehead A.L., Julious S.A. Guidance for using pilot studies to inform the design of intervention trials with continuous outcomes. Clin. Epidemiol. 2018;10:153–157. doi: 10.2147/CLEP.S146397.
    1. Delgado G.J., Chung C.B., Lektrakul N., Azocar P., Botte M.J., Coria D., Bosch E., Resnick D. Tennis leg: Clinical US study of 141 patients and anatomic investigation of four cadavers with MR imaging and US. Radiology. 2002;224:112–119. doi: 10.1148/radiol.2241011067.
    1. Rey E., Lago-Peñas C., Lago-Ballesteros J. Tensiomyography of selected lower-limb muscles in professional soccer players. J. Electromyogr. Kinesiol. 2012;22:866–872. doi: 10.1016/j.jelekin.2012.06.003.
    1. Alvarez-Diaz P., Alentorn-Geli E., Ramon S., Marin M., Steinbacher G., Rius M., Seijas R., Ballester J., Cugat R. Comparison of tensiomyographic neuromuscular characteristics between muscles of the dominant and non-dominant lower extremity in male soccer players. Knee Surg. Sports Traumatol. Arthrosc. 2014;24:2259–2263. doi: 10.1007/s00167-014-3298-5.
    1. Pruyn E.C., Watsford M.L., Murphy A.J. Validity and reliability of three methods of stiffness assessment. J. Sport Health Sci. 2016;5:476–483. doi: 10.1016/j.jshs.2015.12.001.
    1. Feng Y.N., Li Y.P., Liu C.L., Zhang Z.J. Assessing the elastic properties of skeletal muscle and tendon using shearwave ultrasound elastography and MyotonPRO. Sci. Rep. 2018;8:17064. doi: 10.1038/s41598-018-34719-7.
    1. Bizzini M., Mannion A.F. Reliability of a new, hand-held device for assessing skeletal muscle stiffness. Clin. Biomech. 2003;18:459–461. doi: 10.1016/S0268-0033(03)00042-1.
    1. Viir R., Laiho K., Kramarenko J., Mikkelsson M. Repeatability of trapezius muscle tone assessment by a myometric method. J. Mech. Med. Biol. 2006;6:215–228. doi: 10.1142/S0219519406001856.
    1. Chuang L.-L., Wu C.-Y., Lin K.-C. Reliability, validity, and responsiveness of myotonometric measurement of muscle tone, elasticity, and stiffness in patients with stroke. Arch. Phys. Med. Rehabil. 2012;93:532–540. doi: 10.1016/j.apmr.2011.09.014.
    1. Agyapong-Badu S., Aird L., Bailey L., Mooney K., Mullix J., Warner M., Samuel D., Stokes M. Interrater reliability of muscle tone, stiffness and elasticity measurements of rectus femoris and biceps brachii in healthy young and older males. Work. Pap. Health Sci. 2013;4:1–11.
    1. Davidson M.J., Bryant A.L., Bower W.F., Frawley H.C. Myotonometry reliably measures muscle stiffness in the thenar and perineal muscles. Physiother. Can. 2017;69:104–112. doi: 10.3138/ptc.2015-85.
    1. Garcia-Bernal M.-I., Heredia-Rizo A.M., Gonzalez-Garcia P., Cortés-Vega M.-D., Casuso-Holgado M.J. Validity and reliability of myotonometry for assessing muscle viscoelastic properties in patients with stroke: A systematic review and meta-analysis. Sci. Rep. 2021;11:1–12. doi: 10.1038/s41598-021-84656-1.
    1. Arroyo-Morales M., Fernández-Lao C., Ariza-García A., Toro-Velasco C., Winters M., Díaz-Rodríguez L., Cantarero-Villanueva I., Huijbregts P., Fernández-De-Las-Peñas C. Psychophysiological effects of preperformance massage before isokinetic exercise. J. Strength Cond. Res. 2011;25:481–488. doi: 10.1519/JSC.0b013e3181e83a47.
    1. Križaj D., Šimunič B., Žagar T. Short-term repeatability of parameters extracted from radial displacement of muscle belly. J. Electromyogr. Kinesiol. 2008;18:645–651. doi: 10.1016/j.jelekin.2007.01.008.
    1. Tous-Fajardo J., Moras G., Rodríguez-Jiménez S., Usach R., Doutres D.M., Maffiuletti N.A. Inter-rater reliability of muscle contractile property measurements using non-invasive tensiomyography. J. Electromyogr. Kinesiol. 2010;20:761–766. doi: 10.1016/j.jelekin.2010.02.008.
    1. Rusu L.D., Cosma G.G.H., Cernaianu S.M., Marin M.N., Rusu P.F.A., Ciocănescu D.P., Neferu F.N. Tensiomyography method used for neuromuscular assessment of muscle training. J. Neuroeng. Rehabil. 2013;10:1–67. doi: 10.1186/1743-0003-10-67.
    1. Haff G.G., Whitley A., Potteiger J.A. A brief review: Explosive exercises and sports performance. Strength Cond. J. 2001;23:13. doi: 10.1519/00126548-200106000-00003.
    1. Loturco I., Gil S., Laurino C.F.D.S., Roschel H., Kobal R., Abad C.C.C., Nakamura F.Y. Differences in muscle mechanical properties between elite power and endurance athletes. J. Strength Cond. Res. 2015;29:1723–1728. doi: 10.1519/JSC.0000000000000803.
    1. Simunič B., Pisot R., Rittweger J., Degens H. Age-related slowing of contractile properties differs between power, endurance, and nonathletes: A tensiomyographic assessment. J. Gerontol. Ser. A. 2018;73:1602–1608. doi: 10.1093/gerona/gly069.
    1. García-Manso J.M., Rodríguez-Ruiz D., Rodríguez-Matoso D., De Saa Y., Sarmiento S., Quiroga M. Assessment of muscle fatigue after an ultra-endurance triathlon using tensiomyography (TMG) J. Sports Sci. 2011;29:619–625. doi: 10.1080/02640414.2010.548822.
    1. García-Manso J.M., Rodríguez-Matoso D., Rodríguez-Ruiz D., Sarmiento S., de Saa Y., Calderón J. Effect of cold-water immersion on skeletal muscle contractile properties in soccer players. Am. J. Phys. Med. Rehabil. 2011;90:356–363. doi: 10.1097/PHM.0b013e31820ff352.
    1. Leeder J., Gissane C., Van Someren K., Gregson W., Howatson G. Cold water immersion and recovery from strenuous exercise: A meta-analysis. Br. J. Sports Med. 2012;46:233–240. doi: 10.1136/bjsports-2011-090061.
    1. Alentorn-Geli E., Alvarez-Diaz P., Ramon S., Marin M., Steinbacher G., Boffa J.J., Cuscó X., Ballester J., Cugat R. Assessment of neuromuscular risk factors for anterior cruciate ligament injury through tensiomyography in male soccer players. Knee Surg. Sports Traumatol. Arthrosc. 2014;23:2508–2513. doi: 10.1007/s00167-014-3018-1.
    1. Mokhtarzadeh H., Yeow C.H., Goh J.C.H., Oetomo D., Malekipour F., Lee P.V.-S. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing. J. Biomech. 2013;46:1913–1920. doi: 10.1016/j.jbiomech.2013.04.010.
    1. Elias J.J., Faust A.F., Chu Y.-H., Chao E.Y., Cosgarea A.J. The soleus muscle acts as an agonist for the anterior cruciate ligament: An in vitro experimental study. Am. J. Sports Med. 2003;31:241–246. doi: 10.1177/03635465030310021401.
    1. Zubac D., Paravlić A., Koren K., Felicita U., Šimunič B. Plyometric exercise improves jumping performance and skeletal muscle contractile properties in seniors. J. Musculoskelet. Neuronal Interact. 2019;19:38–49.
    1. Pišot R., Narici M.V., Šimunič B., De Boer M., Seynnes O., Jurdana M., Biolo G., Mekjavić I.B. Whole muscle contractile parameters and thickness loss during 35-day bed rest. Eur. J. Appl. Physiol. 2008;104:409–414. doi: 10.1007/s00421-008-0698-6.
    1. Simola R., Álvaro D.P., Raeder C., Wiewelhove T., Kellmann M., Meyer T., Pfeiffer M., Ferrauti A. Muscle mechanical properties of strength and endurance athletes and changes after one week of intensive training. J. Electromyogr. Kinesiol. 2016;30:73–80. doi: 10.1016/j.jelekin.2016.05.005.
    1. López-De-Celis C., Pérez-Bellmunt A., Bueno-Gracia E., Fanlo-Mazas P., Zárate-Tejero C.A., Llurda-Almuzara L., Arróniz A.C., Rodriguez-Rubio P.R. Effect of diacutaneous fibrolysis on the muscular properties of gastrocnemius muscle. PLoS ONE. 2020;15:e0243225. doi: 10.1371/journal.pone.0243225.
    1. Masugi Y., Obata H., Inoue D., Kawashima N., Nakazawa K. Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles. PLoS ONE. 2017;12:e0180275. doi: 10.1371/journal.pone.0180275.
    1. Sariyildiz M., Karacan I., Rezvani A., Ergin O., Cidem M. Cross-education of muscle strength: Cross-training effects are not confined to untrained contralateral homologous muscle. Scand. J. Med. Sci. Sports. 2011;21:e359–e364. doi: 10.1111/j.1600-0838.2011.01311.x.
    1. Carroll T.J., Herbert R.D., Munn J., Lee M., Gandevia S.C. Contralateral effects of unilateral strength training: Evidence and possible mechanisms. J. Appl. Physiol. 2006;101:1514–1522. doi: 10.1152/japplphysiol.00531.2006.
    1. Munn J., Herbert R.D., Gandevia S.C. Contralateral effects of unilateral resistance training: A meta-analysis. J. Appl. Physiol. 2004;96:1861–1866. doi: 10.1152/japplphysiol.00541.2003.

Source: PubMed

3
Tilaa