Role of interleukins in the pathogenesis of pulmonary fibrosis

Yi Xin She, Qing Yang Yu, Xiao Xiao Tang, Yi Xin She, Qing Yang Yu, Xiao Xiao Tang

Abstract

Interleukins, a group of cytokines participating in inflammation and immune response, are proved to be involved in the formation and development of pulmonary fibrosis. In this article, we reviewed the relationship between interleukins and pulmonary fibrosis from the clinical, animal, as well as cellular levels, and discussed the underlying mechanisms in vivo and in vitro. Despite the effects of interleukin-targeted treatment on experimental pulmonary fibrosis, clinical applications are lacking and unsatisfactory. We conclude that intervening in one type of interleukins with similar functions in IPF may not be enough to stop the development of fibrosis as it involves a complex network of regulation mechanisms. Intervening interleukins combined with other existing therapy or targeting interleukins affecting multiple cells/with different functions at the same time may be one of the future directions. Furthermore, the intervention time is critical as some interleukins play different roles at different stages. Further elucidation on these aspects would provide new perspectives on both the pathogenesis mechanism, as well as the therapeutic strategy and drug development.

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1. Interleukins affect the morphology and…
Fig. 1. Interleukins affect the morphology and functions of various cells in pulmonary fibrosis.
(1) Mesenchymal stem cells: IL-8 facilitates the migration and proliferation of mesenchymal stem cells. (2) Macrophages: IL-8 also induces migration of macrophages. IL-4, IL-13, IL-10, and IL-33 promote macrophages to transform into M2 phenotype, which is further promoted by IL-4, IL-6, and IL-13 to transform into a hyper-profibrotic phenotype. (3) Other immune cells: IL-1β induces recruitment of lymphocytes and neutrophils, while IL-5 induces recruitment of eosinophils. (4) Alveolar epithelial cells: IL-17A inhibits autophagy of alveolar epithelial cells, and IL-6 suppresses apoptosis of alveolar type II cells (AT II). IL-6, IL-17A, and IL-18 promote EMT of AT II, whereas IL-22 inhibits this process. (5) Fibroblasts: IL-6 and IL-25 promote the proliferation of fibroblasts. IL-4, IL-11, IL-13, and IL-25 induce differentiation of fibroblasts, whereas IL-27 suppresses both events. IL-18 contributes to the senescence of fibroblasts, and IL-37 facilitates autophagy of fibroblasts. IL-1β, IL-4, IL-6, IL-11, IL-13, IL-17A, IL-25, and IL-33 promote collagen synthesis, while IL-7, IL-12, and IL-27 inhibit collagen synthesis.

References

    1. Akdis, M., Aab, A., Altunbulakli, C., Azkur, K., Costa, R. A., Crameri, R. et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 138, 984–1010 (2016).
    1. Brocker C, Thompson D, Matsumoto A, Nebert DW, Vasiliou V. Evolutionary divergence and functions of the human interleukin (IL) gene family. Hum. Genomics. 2010;5(1):30–55. doi: 10.1186/1479-7364-5-1-30.
    1. Lucey DR, Clerici M, Shearer GM. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin. Microbiol. Rev. 1996;9(4):532–62. doi: 10.1128/CMR.9.4.532.
    1. Sims, J. E. & Smith, D. E. The IL-1 family: regulators of immunity. Nat. Rev. Immunol. 10, 89–102 (2010).
    1. Dinarello, C. A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 281, 8–27 (2018).
    1. Leonard WJ, Lin J-X, O’Shea JJ. The γ family of cytokines: basic biology to therapeutic ramifications. Immunity. 2019;50(4):832–50. doi: 10.1016/j.immuni.2019.03.028.
    1. Fickenscher H, Hör S, Küpers H, Knappe A, Wittmann S, Sticht H. The interleukin-10 family of cytokines. Trends Immunol. 2002;23(2):89–96. doi: 10.1016/S1471-4906(01)02149-4.
    1. Richmond J, Tuzova M, Cruikshank W, Center D. Regulation of cellular processes by interleukin-16 in homeostasis and cancer. J. Cell Physiol. 2014;229(2):139–47. doi: 10.1002/jcp.24441.
    1. Moschen AR, Tilg H, Raine TIL-12. IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting. Nat. Rev. Gastroenterol. Hepatol. 2019;16(3):185–96. doi: 10.1038/s41575-018-0084-8.
    1. Monin, L., Gaffen, S. L. Interleukin 17 family cytokines: signaling mechanisms, biological activities, and therapeutic implications. Cold Spring Harb. Perspect. Biol. 10, a028522 (2018).
    1. Schwertschlag US, Trepicchio WL, Dykstra KH, Keith JC, Turner KJ, Dorner AJ. Hematopoietic, immunomodulatory and epithelial effects of interleukin-11. Leukemia. 1999;13(9):1307–15. doi: 10.1038/sj.leu.2401514.
    1. Unver N, McAllister F. IL-6 family cytokines: key inflammatory mediators as biomarkers and potential therapeutic targets. Cytokine Growth Factor Rev. 2018;41:10–7. doi: 10.1016/j.cytogfr.2018.04.004.
    1. Tait Wojno ED, Hunter CA, Stumhofer JS. The immunobiology of the interleukin-12 family: room for discovery. Immunity. 2019;50(4):851–70. doi: 10.1016/j.immuni.2019.03.011.
    1. van de Veerdonk FL, de Graaf DM, Joosten LA, Dinarello CA. Biology of IL-38 and its role in disease. Immunol. Rev. 2018;281(1):191–6. doi: 10.1111/imr.12612.
    1. Bagnato, G., Roberts, W. N, Roman, J. & Gangemi, S. A systematic review of overlapping microRNA patterns in systemic sclerosis and idiopathic pulmonary fibrosis. Eur. Respirat. Rev. 26, 160125 (2017). 10.1183/16000617.0125-2016.
    1. Pollard KM. Silica, silicosis, and autoimmunity. Front. Immunol. 2016;7:97. doi: 10.3389/fimmu.2016.00097.
    1. Knudsen L, Ruppert C, Ochs M. Tissue remodelling in pulmonary fibrosis. Cell Tissue Res. 2017;367(3):607–26. doi: 10.1007/s00441-016-2543-2.
    1. Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet. 2017;389(10082):1941–52. doi: 10.1016/S0140-6736(17)30866-8.
    1. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am. J. Resp. Crit. Care. 2011;183(6):788–824. doi: 10.1164/rccm.2009-040GL.
    1. Martinez FJ, Collard HR, Pardo A, Raghu G, Richeldi L, Selman M, et al. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Prim. 2017;3:17074. doi: 10.1038/nrdp.2017.74.
    1. Raghu G, Rochwerg B, Zhang Y, Garcia CAC, Azuma A, Behr J, et al. An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. an update of the 2011 Clinical Practice Guideline. Am. J. Resp. Crit. Care. 2015;192:e3–19. doi: 10.1164/rccm.201506-1063ST.
    1. Sgalla G, Iovene B, Calvello M, Ori M, Varone F, Richeldi L. Idiopathic pulmonary fibrosis: pathogenesis and management. Respir. Res. 2018;19(1):32. doi: 10.1186/s12931-018-0730-2.
    1. Taskar VS, Coultas DB. Is idiopathic pulmonary fibrosis an environmental disease? Proc. Am. Thorac. Soc. 2006;3(4):293–8. doi: 10.1513/pats.200512-131TK.
    1. Zhang L, Wang Y, Pandupuspitasari NS, Wu G, Xiang X, Gong Q, et al. Endoplasmic reticulum stress, a new wrestler, in the pathogenesis of idiopathic pulmonary fibrosis. Am. J. Transl. Res. 2017;9(2):722–35.
    1. Birch J, Barnes PJ, Passos JF. Mitochondria, telomeres and cell senescence: Implications for lung ageing and disease. Pharm. Therapeut. 2018;183:34–49. doi: 10.1016/j.pharmthera.2017.10.005.
    1. Bilgili, H., Bialas, A. J., Gorski, P. & Piotrowski, W. J. Telomere abnormalities in the pathobiology of idiopathic pulmonary fibrosis. J. Clin. Med. 8, 1232 (2019).
    1. Gross TJ, Hunninghake GW. Idiopathic pulmonary fibrosis. N. Engl. J. Med. 2001;345(7):517–25. doi: 10.1056/NEJMra003200.
    1. Desai O, Winkler J, Minasyan M, Herzog EL. The role of immune and inflammatory cells in idiopathic pulmonary fibrosis. Front. Med. 2018;5:43. doi: 10.3389/fmed.2018.00043.
    1. Kolahian S, Fernandez IE, Eickelberg O, Hartl D. Immune mechanisms in pulmonary fibrosis. Am. J. Resp. Cell Mol. 2016;55(3):309–22. doi: 10.1165/rcmb.2016-0121TR.
    1. Zhang L, Wang Y, Wu G, Xiong W, Gu W, Wang C-Y. Macrophages: friend or foe in idiopathic pulmonary fibrosis? Resp. Res. 2018;19(1):170. doi: 10.1186/s12931-018-0864-2.
    1. Tsoumakidou M, Karagiannis KP, Bouloukaki I, Zakynthinos S, Tzanakis N, Siafakas NM. Increased bronchoalveolar lavage fluid CD1c expressing dendritic cells in idiopathic pulmonary fibrosis. Respiration. 2009;78(4):446–52. doi: 10.1159/000226244.
    1. Bantsimba-Malanda C, Marchal-Somme J, Goven D, Freynet O, Michel L, Crestani B, et al. A role for dendritic cells in bleomycin-induced pulmonary fibrosis in mice? Am. J. Resp. Crit. Care. 2010;182(3):385–95. doi: 10.1164/rccm.200907-1164OC.
    1. Tort Tarres M, Aschenbrenner F, Maus R, Stolper J, Schuette L, Knudsen L, et al. The FMS-like tyrosine kinase-3 ligand/lung dendritic cell axis contributes to regulation of pulmonary fibrosis. Thorax. 2019;74(10):947–57. doi: 10.1136/thoraxjnl-2018-212603.
    1. Shin JS. Unexpected role of dendritic cells in pulmonary fibrosis. Thorax. 2019;74(10):925–6. doi: 10.1136/thoraxjnl-2019-213510.
    1. Liu G, Zhai H, Zhang T, Li S, Li N, Chen J, et al. New therapeutic strategies for IPF: Based on the “phagocytosis-secretion-immunization” network regulation mechanism of pulmonary macrophages. Biomed. Pharmacother. 2019;118:109230. doi: 10.1016/j.biopha.2019.109230.
    1. Wilson MS, Madala SK, Ramalingam TR, Gochuico BR, Rosas IO, Cheever AW, et al. Bleomycin and IL-1 beta-mediated pulmonary fibrosis is IL-17A dependent. J. Exp. Med. 2010;207(3):535–52. doi: 10.1084/jem.20092121.
    1. Tsoutsou PG, Gourgoulianis KI, Petinaki E, Germenis A, Tsoutsou AG, Mpaka M, et al. Cytokine levels in the sera of patients with idiopathic pulmonary fibrosis. Resp. Med. 2006;100(5):938–45. doi: 10.1016/j.rmed.2005.06.016.
    1. Papiris SA, Tomos IP, Karakatsani A, Spathis A, Korbila I, Analitis A, et al. High levels of IL-6 and IL-8 characterize early-on idiopathic pulmonary fibrosis acute exacerbations. Cytokine. 2018;102:168–72. doi: 10.1016/j.cyto.2017.08.019.
    1. Weng D, Chen X-Q, Qiu H, Zhang Y, Li Q-H, Zhao M-M, et al. The role of infection in acute exacerbation of idiopathic pulmonary fibrosis. Mediat Inflamm. 2019;2019:5160694. doi: 10.1155/2019/5160694.
    1. Ziegenhagen MW, Zabel P, Zissel G, Schlaak M, Muller-Quernheim J. Serum level of interleukin 8 is elevated in idiopathic pulmonary fibrosis and indicates disease activity. Am. J. Resp. Crit. Care. 1998;157(3 Pt 1):762–8. doi: 10.1164/ajrccm.157.3.9705014.
    1. Richards TJ, Kaminski N, Baribaud F, Flavin S, Brodmerkel C, Horowitz D, et al. Peripheral blood proteins predict mortality in idiopathic pulmonary fibrosis. Am. J. Resp. Crit. Care. 2012;185(1):67–76. doi: 10.1164/rccm.201101-0058OC.
    1. Lee JU, Chang HS, Lee HJ, Jung CA, Bae DJ, Song HJ, et al. Upregulation of interleukin-33 and thymic stromal lymphopoietin levels in the lungs of idiopathic pulmonary fibrosis. BMC Pulm. Med. 2017;17(1):39. doi: 10.1186/s12890-017-0380-z.
    1. Murray LA, Zhang H, Oak SR, Coelho AL, Herath A, Flaherty KR, et al. Targeting interleukin-13 with tralokinumab attenuates lung fibrosis and epithelial damage in a humanized SCID idiopathic pulmonary fibrosis model. Am. J. Resp. Cell Mol. 2014;50(5):985–94. doi: 10.1165/rcmb.2013-0342OC.
    1. Gasse P, Mary C, Guenon I, Noulin N, Charron S, Schnyder-Candrian S, et al. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J. Clin. Invest. 2007;117(12):3786–99.
    1. Gharaee-Kermani M, McGarry B, Lukacs N, Huffnagle G, Egan RW, Phan SH. The role of IL-5 in bleomycin-induced pulmonary fibrosis. J. Leukoc. Biol. 1998;64(5):657–66. doi: 10.1002/jlb.64.5.657.
    1. Kurosaki F, Uchibori R, Sehara Y, Saga Y, Urabe M, Mizukami H, et al. AAV6-mediated IL-10 expression in the lung ameliorates bleomycin-induced pulmonary fibrosis in mice. Hum. Gene Ther. 2018;29(11):1242–51. doi: 10.1089/hum.2018.024.
    1. Mi S, Li Z, Yang HZ, Liu H, Wang JP, Ma YG, et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J. Immunol. 2011;187(6):3003–14. doi: 10.4049/jimmunol.1004081.
    1. Zhang LM, Zhang J, Zhang Y, Fei C, Wang L, Yi ZW, et al. Interleukin-18 promotes fibroblast senescence in pulmonary fibrosis through down-regulating Klotho expression. Biomed. Pharmacother. 2019;113:108756. doi: 10.1016/j.biopha.2019.108756.
    1. Zhang LM, Zhang Y, Fei C, Zhang J, Wang L, Yi ZW, et al. Neutralization of IL-18 by IL-18 binding protein ameliorates bleomycin-induced pulmonary fibrosis via inhibition of epithelial-mesenchymal transition. Biochem. Biophys. Res. Commun. 2019;508(2):660–6. doi: 10.1016/j.bbrc.2018.11.129.
    1. Kim MS, Baek AR, Lee JH, Jang AS, Kim DJ, Chin SS, et al. IL-37 attenuates lung fibrosis by inducing autophagy and regulating TGF-beta1 production in mice. J. Immunol. 2019;203(8):2265–75. doi: 10.4049/jimmunol.1801515.
    1. Le TT, Karmouty-Quintana H, Melicoff E, Le TT, Weng T, Chen NY, et al. Blockade of IL-6 Trans signaling attenuates pulmonary fibrosis. J. Immunol. 2014;193(7):3755–68. doi: 10.4049/jimmunol.1302470.
    1. Shieh, J. -M., Tseng, H. -Y., Jung, F., Yang, S. -H, Lin, J. -C. Elevation of IL-6 and IL-33 levels in serum associated with lung fibrosis and skeletal muscle wasting in a bleomycin-induced lung injury mouse model. Mediat. Inflamm. 2019, 7947596 (2019). 10.1155/2019/7947596.
    1. Ayaub EA, Dubey A, Imani J, Botelho F, Kolb MRJ, Richards CD, et al. Overexpression of OSM and IL-6 impacts the polarization of pro-fibrotic macrophages and the development of bleomycin-induced lung fibrosis. Sci. Rep. 2017;7(1):13281. doi: 10.1038/s41598-017-13511-z.
    1. Kobayashi T, Tanaka K, Fujita T, Umezawa H, Amano H, Yoshioka K, et al. Bidirectional role of IL-6 signal in pathogenesis of lung fibrosis. Respir. Res. 2015;16:99. doi: 10.1186/s12931-015-0261-z.
    1. Gillery P, Fertin C, Nicolas JF, Chastang F, Kalis B, Banchereau J, et al. Interleukin-4 stimulates collagen gene expression in human fibroblast monolayer cultures potential role in fibrosis. FEBS Lett. 1992;302(3):231–4. doi: 10.1016/0014-5793(92)80448-P.
    1. Sempowski GD, Derdak S, Phipps RP. Interleukin-4 and interferon-gamma discordantly regulate collagen biosynthesis by functionally distinct lung fibroblast subsets. J. Cell Physiol. 1996;167(2):290–6. doi: 10.1002/(SICI)1097-4652(199605)167:2<290::AID-JCP13>;2-C.
    1. Hashimoto S, Gon Y, Takeshita I, Maruoka S, Horie TIL-4. and IL-13 induce myofibroblastic phenotype of human lung fibroblasts through c-Jun NH2-terminal kinase-dependent pathway. J. Allergy Clin. Immunol. 2001;107(6):1001–8. doi: 10.1067/mai.2001.114702.
    1. Huaux F, Liu T, McGarry B, Ullenbruch M, Phan SH. Dual roles of IL-4 in lung injury and fibrosis. J. Immunol. 2003;170:2083–92. doi: 10.4049/jimmunol.170.4.2083.
    1. Belperio JA, Dy M, Burdick MD, Xue YY, Li K, Elias JA, et al. Interaction of IL-13 and C10 in the pathogenesis of bleomycin-induced pulmonary fibrosis. Am. J. Resp. Cell Mol. 2002;27(4):419–27. doi: 10.1165/rcmb.2002-0009OC.
    1. Izbicki G, Or R, Christensen TG, Segel MJ, Fine A, Goldstein RH, et al. Bleomycin-induced lung fibrosis in IL-4-overexpressing and knockout mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002;283(5):L1110–L6. doi: 10.1152/ajplung.00107.2002.
    1. Arras M, Louahed J, Heilier J-F, Delos M, Brombacher F, Renauld J-C, et al. IL-9 protects against bleomycin-induced lung injury: involvement of prostaglandins. Am. J. Pathol. 2005;166(1):107–15. doi: 10.1016/S0002-9440(10)62236-5.
    1. Arras M, Louahed J, Simoen V, Barbarin V, Misson P, van den Brule S, et al. B lymphocytes are critical for lung fibrosis control and prostaglandin E2 regulation in IL-9 transgenic mice. Am. J. Respir. Cell Mol. Biol. 2006;34(5):573–80. doi: 10.1165/rcmb.2004-0383OC.
    1. Sugimoto N, Suzukawa M, Nagase H, Koizumi Y, Ro S, Kobayashi K, et al. IL-9 Blockade Suppresses Silica-induced Lung Inflammation and Fibrosis in Mice. Am. J. Resp. Cell Mol. 2019;60(2):232–43. doi: 10.1165/rcmb.2017-0287OC.
    1. Hewlett JC, Kropski JA, Blackwell TS. Idiopathic pulmonary fibrosis: epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix biology: journal of the International Society for. Matrix Biol. 2018;71-72:112–27. doi: 10.1016/j.matbio.2018.03.021.
    1. Kolb M, Bonella F, Wollin L. Therapeutic targets in idiopathic pulmonary fibrosis. Resp. Med. 2017;131:49–57. doi: 10.1016/j.rmed.2017.07.062.
    1. Suwara MI, Green NJ, Borthwick LA, Mann J, Mayer-Barber KD, Barron L, et al. IL-1 alpha released from damaged epithelial cells is sufficient and essential to trigger inflammatory responses in human lung fibroblasts. Mucosal Immunol. 2014;7(3):684–93. doi: 10.1038/mi.2013.87.
    1. Zhang Y, Lee TC, Guillemin B, Yu MC, Rom WN. Enhanced IL-1 beta and tumor necrosis factor-alpha release and messenger RNA expression in macrophages from idiopathic pulmonary fibrosis or after asbestos exposure. J. Immunol. 1993;150:4188–96.
    1. Kline JN, Schwartz DA, Monick MM, Floerchinger CS, Hunninghake GW. Relative release of interleukin-1 beta and interleukin-1 receptor antagonist by alveolar macrophages. A study in asbestos-induced lung disease, sarcoidosis, and idiopathic pulmonary fibrosis. Chest. 1993;104(1):47–53. doi: 10.1378/chest.104.1.47.
    1. Huang M, Sharma S, Zhu LX, Keane MP, Luo J, Zhang L, et al. IL-7 inhibits fibroblast TGF-beta production and signaling in pulmonary fibrosis. J. Clin. Invest. 2002;109(7):931–7. doi: 10.1172/JCI0214685.
    1. Zhang L, Keane MP, Zhu LX, Sharma S, Rozengurt E, Strieter RM, et al. Interleukin-7 and transforming growth factor-beta play counter-regulatory roles in protein kinase C-delta-dependent control of fibroblast collagen synthesis in pulmonary fibrosis. J. Biol. Chem. 2004;279(27):28315–9. doi: 10.1074/jbc.C400115200.
    1. Saito A, Okazaki H, Sugawara I, Yamamoto K, Takizawa H. Potential action of IL-4 and IL-13 as fibrogenic factors on lung fibroblasts in vitro. Int. Arch. Allergy Immunol. 2003;132(2):168–76. doi: 10.1159/000073718.
    1. Moodley YP, Scaffidi AK, Misso NL, Keerthisingam C, McAnulty RJ, Laurent GJ, et al. Fibroblasts isolated from normal lungs and those with idiopathic pulmonary fibrosis differ in interleukin-6/gp130-mediated cell signaling and proliferation. Am. J. Pathol. 2003;163(1):345–54. doi: 10.1016/S0002-9440(10)63658-9.
    1. Moodley YP, Misso NLA, Scaffidi AK, Fogel-Petrovic M, McAnulty RJ, Laurent GJ, et al. Inverse effects of interleukin-6 on apoptosis of fibroblasts from pulmonary fibrosis and normal lungs. Am. J. Resp. Cell Mol. 2003;29(4):490–8. doi: 10.1165/rcmb.2002-0262OC.
    1. O’Donoghue RJ, Knight DA, Richards CD, Prele CM, Lau HL, Jarnicki AG, et al. Genetic partitioning of interleukin-6 signalling in mice dissociates Stat3 from Smad3-mediated lung fibrosis. Embo. Mol. Med. 2012;4(9):939–51. doi: 10.1002/emmm.201100604.
    1. Epstein Shochet G, Brook E, Bardenstein-Wald B, Shitrit D. TGF-β pathway activation by idiopathic pulmonary fibrosis (IPF) fibroblast derived soluble factors is mediated by IL-6 trans-signaling. Resp. Res. 2020;21(1):56. doi: 10.1186/s12931-020-1319-0.
    1. Murray LA, Argentieri RL, Farrell FX, Bracht M, Sheng H, Whitaker B, et al. Hyper-responsiveness of IPF/UIP fibroblasts: interplay between TGFbeta1, IL-13 and CCL2. Int. J. Biochem. Cell Biol. 2008;40(10):2174–82. doi: 10.1016/j.biocel.2008.02.016.
    1. Guo J, Yao H, Lin X, Xu H, Dean D, Zhu Z, et al. IL-13 induces YY1 through the AKT pathway in lung fibroblasts. PLoS ONE. 2015;10(3):e0119039. doi: 10.1371/journal.pone.0119039.
    1. Schafer S, Viswanathan S, Widjaja AA, Lim W-W, Moreno-Moral A, DeLaughter DM, et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552(7683):110–5. doi: 10.1038/nature24676.
    1. Ng B, Dong JR, D’Agostino G, Viswanathan S, Widjaja AA, Lim WW, et al. Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Sci. Transl. Med. 2019;11(511):14. doi: 10.1126/scitranslmed.aaw1237.
    1. Xu, X., Geng, J., Li, S., Jiang, D., Wang, C. Dai, H. The expression and role of IL-25 and its receptor in idiopathic pulmonary fibrosis. Chest149, A213 (2016).
    1. Xu X, Luo S, Li B, Dai H, Zhang J. Feature Article: IL-25 contributes to lung fibrosis by directly acting on alveolar epithelial cells and fibroblasts. Exp. Biol. Med. 2019;244(9):770–80. doi: 10.1177/1535370219843827.
    1. Fabbi M, Carbotti G, Ferrini S. Dual roles of IL-27 in cancer biology and immunotherapy. Mediat. Inflamm. 2017;2017:3958069. doi: 10.1155/2017/3958069.
    1. Dong Z, Zhao X, Tai W, Lei W, Wang Y, Li Z, et al. IL-27 attenuates the TGF-beta1-induced proliferation, differentiation and collagen synthesis in lung fibroblasts. Life Sci. 2016;146:24–33. doi: 10.1016/j.lfs.2016.01.004.
    1. Hong GH, Park SY, Kwon HS, Bang BR, Lee J, Kim SY, et al. IL-32gamma attenuates airway fibrosis by modulating the integrin-FAK signaling pathway in fibroblasts. Respir. Res. 2018;19(1):188. doi: 10.1186/s12931-018-0863-3.
    1. Li D, Guabiraba R, Besnard AG, Komai-Koma M, Jabir MS. Zhang L, et al. IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J. Allergy Clin. Immunol. 2014;134(6):1422–32 e11. doi: 10.1016/j.jaci.2014.05.011.
    1. Sun L, Louie MC, Vannella KM, Wilke CA, LeVine AM, Moore BB, et al. New concepts of IL-10-induced lung fibrosis: fibrocyte recruitment and M2 activation in a CCL2/CCR2 axis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2011;300(3):L341–L53. doi: 10.1152/ajplung.00122.2010.
    1. Shamskhou EA, Kratochvil MJ, Orcholski ME, Nagy N, Kaber G, Steen E, et al. Hydrogel-based delivery of Il-10 improves treatment of bleomycin-induced lung fibrosis in mice. Biomaterials. 2019;203:52–62. doi: 10.1016/j.biomaterials.2019.02.017.
    1. Aumiller V, Balsara N, Wilhelm J, Gunther A, Konigshoff M. WNT/beta-catenin signaling induces IL-1 beta expression by alveolar epithelial cells in pulmonary fibrosis. Am. J. Resp. Cell Mol. 2013;49(1):96–104. doi: 10.1165/rcmb.2012-0524OC.
    1. Doerner AM, Zuraw BL. TGF-beta1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1beta but not abrogated by corticosteroids. Resp. Res. 2009;10:100. doi: 10.1186/1465-9921-10-100.
    1. Geiser T, Jarreau PH, Atabai K, Matthay MA. Interleukin-1beta augments in vitro alveolar epithelial repair. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000;279(6):L1184–90. doi: 10.1152/ajplung.2000.279.6.L1184.
    1. Ahmad, A., Wang, T., Liu, Y., Zou, J. -F., Cheng, Z. -S. Interleukin-17 induces human alveolar epithelial to mesenchymal cell transition via the TGF-β1 mediated Smad2/3 and ERK1/2 activation. PLoS ONE12, e0183972 (2017).
    1. Liang M, Wang J, Chu H, Zhu X, He H, Liu Q, et al. Interleukin-22 inhibits bleomycin-induced pulmonary fibrosis. Mediat. Inflamm. 2013;2013:209179. doi: 10.1155/2013/209179.
    1. Whittington HA, Armstrong L, Uppington KM, Millar AB. Interleukin-22: a potential immunomodulatory molecule in the lung. Am. J. Resp. Cell Mol. 2004;31(2):220–6. doi: 10.1165/rcmb.2003-0285OC.
    1. Shimbori C, Upagupta C, Bellaye P-S, Ayaub EA, Sato S, Yanagihara T, et al. Mechanical stress-induced mast cell degranulation activates TGF-β1 signalling pathway in pulmonary fibrosis. Thorax. 2019;74(5):455–65. doi: 10.1136/thoraxjnl-2018-211516.
    1. Yang L, Herrera J, Gilbertsen A, Xia H, Smith K, Benyumov A, et al. IL-8 mediates idiopathic pulmonary fibrosis mesenchymal progenitor cell fibrogenicity. Am. J. Physiol. Lung Cell Mol. Physiol. 2018;314(1):L127–L36. doi: 10.1152/ajplung.00200.2017.
    1. Keane MP, Belperio JA, Burdick MD, Strieter RM. IL-12 attenuates bleomycin-induced pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001;281(1):L92–L7. doi: 10.1152/ajplung.2001.281.1.L92.
    1. Kotsiou OS, Gourgoulianis KI, Zarogiannis SG. IL-33/ST2 axis in organ fibrosis. Front. Immunol. 2018;9:2432. doi: 10.3389/fimmu.2018.02432.
    1. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KHG. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity. 2009;31(2):331–41. doi: 10.1016/j.immuni.2009.08.001.
    1. Gasse P, Riteau N, Vacher R, Michel ML, Fautrel A, di Padova F, et al. IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis. PLoS ONE. 2011;6(8):e23185. doi: 10.1371/journal.pone.0023185.
    1. Hams E, Armstrong ME, Barlow JL, Saunders SP, Schwartz C, Cooke G, et al. IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc. Natl Acad. Sci. USA. 2014;111(1):367–72. doi: 10.1073/pnas.1315854111.
    1. Dong Z, Lu X, Yang Y, Zhang T, Li Y, Chai Y, et al. IL-27 alleviates the bleomycin-induced pulmonary fibrosis by regulating the Th17 cell differentiation. BMC Pulm. Med. 2015;15:13. doi: 10.1186/s12890-015-0012-4.
    1. Raghu, G., Richeldi, L., Crestani, B., Wung. P., Bejuit, R. & Esperet, C. et al. SAR156597 in idiopathic pulmonary fibrosis: a phase 2 placebo-controlled study (DRI11772). Eur. Respirat. J.52, (2018).
    1. Parker, J. M, Glaspole, I. N., Lancaster, L. H., Haddad, T J., She, D., Roseti, S.L. et al. A Phase 2 randomized controlled study of tralokinumab in subjects with idiopathic pulmonary fibrosis. Am. J. Resp. Crit Care197, 94–103 (2018).
    1. Swigris JJ, Ogura T, Scholand M, Glaspole I, Maher TM, Kardatzke D, et al. The RIFF Study (Cohort A): a phase II, randomized, double-blind, placebo-controlled trial of lebrikizumab as monotherapy in patients with idiopathic pulmonary fibrosis. Am. J. Resp. Crit. Care. 2018;197:2. doi: 10.1164/rccm.201712-2403ED.

Source: PubMed

3
Tilaa