Computerized Eye-Tracking Training Improves the Saccadic Eye Movements of Children with Attention-Deficit/Hyperactivity Disorder

Tsz Lok Lee, Michael K Yeung, Sophia L Sze, Agnes S Chan, Tsz Lok Lee, Michael K Yeung, Sophia L Sze, Agnes S Chan

Abstract

Abnormal saccadic eye movements, such as longer anti-saccade latency and lower pro-saccade accuracy, are common in children with attention-deficit/hyperactivity disorder (ADHD). The present study aimed to investigate the effectiveness of computerized eye-tracking training on improving saccadic eye movements in children with ADHD. Eighteen children with ADHD (mean age = 8.8 years, 10 males) were recruited and assigned to either the experimental (n = 9) or control group (n = 9). The experimental group underwent an accumulated 240 min of eye-tracking training within two weeks, whereas the control group engaged in web game playing for the same amount of time. Saccadic performances were assessed using the anti- and pro-saccade tasks before and after training. Compared to the baseline, only the children who underwent the eye-tracking training showed significant improvements in saccade latency and accuracy in the anti- and pro-saccade tasks, respectively. In contrast, the control group exhibited no significant changes. These preliminary findings support the use of eye-tracking training as a safe non-pharmacological intervention for improving the saccadic eye movements of children with ADHD.

Keywords: ADHD; cognitive training; eye-tracking; fixation; saccade.

Conflict of interest statement

A.S.C. is the founder and director of Pro-talent Association Ltd. (a non-profit organization) in Hong Kong. S.L.S. is a hired clinical psychologist under Pro-talent Association Ltd. All other authors have no conflicts of interests to disclose.

Figures

Figure 1
Figure 1
Example of a saccade trial with a target cue appearing on the left. The two black solid lines represent the correct saccadic responses.

References

    1. Findlay J.M. Saccade target selection during visual search. Vis. Res. 1997;37:617–631. doi: 10.1016/S0042-6989(96)00218-0.
    1. Horstmann G., Becker S., Ernst D. Dwelling, rescanning, and skipping of distractors explain search efficiency in difficult search better than guidance by the target. Vis. Cogn. 2017;25:291–305. doi: 10.1080/13506285.2017.1347591.
    1. Horstmann G., Ernst D., Becker S. Dwelling on distractors varying in target-distractor similarity. Acta Psychol. 2019;198:102859. doi: 10.1016/j.actpsy.2019.05.011.
    1. Wang C., Brien D.C., Munoz D.P. Pupil size reveals preparatory processes in the generation of pro-saccades and anti-saccades. Eur. J. Neurosci. 2015;41:1102–1110. doi: 10.1111/ejn.12883.
    1. Klein C., Rauh R., Biscaldi M. Cognitive correlates of anti-saccade task performance. Exp. Brain Res. 2010;203:759–764. doi: 10.1007/s00221-010-2276-5.
    1. Goto Y., Hatakeyama K., Kitama T., Sato Y., Kanemura H., Aoyagi K., Sugita K., Aihara M. Saccade eye movements as a quantitative measure of frontostriatal network in children with ADHD. Brain Dev. 2010;32:347–355. doi: 10.1016/j.braindev.2009.04.017.
    1. Munoz D.P., Armstrong I.T., Hampton K.A., Moore K.D. Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder. J. Neurophysiol. 2003;90:503–514. doi: 10.1152/jn.00192.2003.
    1. Huang J., Chan Y. Saccade eye movement in children with attention deficit hyperactivity disorder. Nord. J. Psychiatry. 2020;74:16–22. doi: 10.1080/08039488.2019.1666919.
    1. Manoli A., Liversedge S.P., Sonuga-Barke E.J., Hadwin J.A. The Differential Effect of Anxiety and ADHD Symptoms on Inhibitory Control and Sustained Attention for Threat Stimuli: A Go/No-Go Eye-Movement Study. J. Atten. Dis. 2020:1087054720930809. doi: 10.1177/1087054720930809.
    1. Klein C., Fischer B., Hartnegg K. Effects of methylphenidate on saccadic responses in patients with ADHD. Exp. Brain Res. 2002;145:121–125. doi: 10.1007/s00221-002-1105-x.
    1. Munoz D.P., Hampton K.A., Moore K.D., Goldring J.E. Control of purposive saccadic eye movements and visual fixation in children with attention-deficit hyperactivity disorder. In: Becker W., Deubel H., Mergner T., editors. Current Oculomotor Research: Physiological and Psychological Aspects. 1st ed. Springer; Boston, MA, USA: 1999. pp. 415–423.
    1. Lee J., Grizenko N., Bhat V., Sengupta S., Polotskaia A., Joober R. Relation between therapeutic response and side effects induced by methylphenidate as observed by parents and teachers of children with ADHD. BMC Psychiatry. 2011;11:70. doi: 10.1186/1471-244X-11-70.
    1. García-Baos A., D’Amelio T., Oliveira I., Collins P., Echevarria C., Zapata L.P., Liddle E., Supèr H. Novel Interactive Eye-Tracking Game for Training Attention in Children With Attention-Deficit/Hyperactivity Disorder. Prim. Care Companion CNS Disord. 2019;21:19m02428. doi: 10.4088/PCC.19m02428.
    1. Munoz D.P., Armstrong I., Coe B. Using Eye Movements to Probe Development and Dysfunction. Elsevier; Amsterdam, The Netherlands: 2007. pp. 99–124. Eye movements.
    1. Schall J.D. Visuomotor functions in the frontal lobe. Annu. Rev. Vis. Sci. 2015;1:469–498. doi: 10.1146/annurev-vision-082114-035317.
    1. Groner R., Groner M.T. Attention and eye movement control: An overview. Eur. Arch Psychiatry Neurol. Sci. 1989;239:9–16. doi: 10.1007/BF01739737.
    1. Mirsky J.B., Heuer H.W., Jafari A., Kramer J.H., Schenk A.K., Viskontas I.V., Neuhaus J., Miller B.L., Boxer A.L. Anti-saccade performance predicts executive function and brain structure in normal elders. Cogn. Behav. Neurol. 2011;24:50. doi: 10.1097/WNN.0b013e318223f6c6.
    1. Constantinidis C., Luna B. Neural substrates of inhibitory control maturation in adolescence. Trends Neurosci. 2019;42:604–616. doi: 10.1016/j.tins.2019.07.004.
    1. Ordaz S.J., Foran W., Velanova K., Luna B. Longitudinal growth curves of brain function underlying inhibitory control through adolescence. J. Neurosci. 2013;33:18109–18124. doi: 10.1523/JNEUROSCI.1741-13.2013.
    1. Loge D.V., Staton R.D., Beatty W.W. Performance of children with ADHD on tests sensitive to frontal lobe dysfunction. J. Am. Acad. Child Adolesc. Psychiatry. 1990;29:540–545. doi: 10.1097/00004583-199007000-00006.
    1. Schneider M.F., Krick C.M., Retz W., Hengesch G., Retz-Junginger P., Reith W., Rösler M. Impairment of fronto-striatal and parietal cerebral networks correlates with attention deficit hyperactivity disorder (ADHD) psychopathology in adults—A functional magnetic resonance imaging (fMRI) study. Psychiatry Res. Neuroimaging. 2010;183:75–84. doi: 10.1016/j.pscychresns.2010.04.005.
    1. Shue K.L., Douglas V.I. Attention deficit hyperactivity disorder and the frontal lobe syndrome. Brain Cogn. 1992;20:104–124. doi: 10.1016/0278-2626(92)90064-S.
    1. Lee T.L., Yeung M.K., Sze S.L., Chan A.S. Eye-tracking training improves inhibitory control in children with attention-deficit/hyperactivity disorder. J. Autism. Dev. Disord. (under review)
    1. Wechsler D. Wechsler Intelligence Scale for Children—Fourth Edition, Hong Kong Version. King-may Psychological Assessment; Hong Kong, China: 2010.
    1. Mackenzie G.B., Wonders E. Rethinking intelligence quotient exclusion criteria practices in the study of attention deficit hyperactivity disorder. Front. Psychol. 2016;7:794. doi: 10.3389/fpsyg.2016.00794.
    1. Conners C.K. Conners’ Rating Scales—Revised: User’s Manual. Multi-Health Systems, Incorporated; North Tonawanda, NY, USA: 1997.
    1. Peirce J.W. PsychoPy—psychophysics software in Python. J. Neurosci. Methods. 2007;162:8–13. doi: 10.1016/j.jneumeth.2006.11.017.
    1. Klein C.H., Raschke A., Brandenbusch A. Development of pro–and antisaccades in children with attention–deficit hyperactivity disorder (ADHD) and healthy controls. Psychophysiology. 2003;40:17–28. doi: 10.1111/1469-8986.00003.
    1. Peel T.R., Dash S., Lomber S.G., Corneil B.D. Frontal eye field inactivation diminishes superior colliculus activity, but delayed saccadic accumulation governs reaction time increases. J. Neurosci. 2017;37:11715–11730. doi: 10.1523/JNEUROSCI.2664-17.2017.
    1. Stuphorn V., Brown J.W., Schall J.D. Role of supplementary eye field in saccade initiation: Executive, not direct, control. J. Neurophysiol. 2010;103:801–816. doi: 10.1152/jn.00221.2009.
    1. Cameron I.G., Riddle J.M., D’Esposito M. Dissociable roles of dorsolateral prefrontal cortex and frontal eye fields during saccadic eye movements. Front. Hum. Neurosci. 2015;9:613. doi: 10.3389/fnhum.2015.00613.
    1. Biscaldi M., Fischer B., Hartnegg K. Voluntary saccadic control in dyslexia. Perception. 2000;29:509–521. doi: 10.1068/p2666a.
    1. Luna B., Doll S.K., Hegedus S.J., Minshew N.J., Sweeney J.A. Maturation of executive function in autism. Biol. Psychiatry. 2007;61:474–481. doi: 10.1016/j.biopsych.2006.02.030.

Source: PubMed

3
Tilaa