Human Breast Milk Composition and Function in Human Health: From Nutritional Components to Microbiome and MicroRNAs

Dae Yong Yi, Su Yeong Kim, Dae Yong Yi, Su Yeong Kim

Abstract

Human breast milk (HBM) is not only an indispensable source of nutrients for early human growth and development, supplying components that support infant growth and development, but also contains various essential immunologic components with anti-infectious activities and critical roles in the formation of immunity. It is also known that HBM contains its own unique microbiome, including beneficial, commensal, and potentially probiotic bacteria, that can contribute to infant gut colonization. In addition, HBM-derived extracellular vesicles, exosomes, and microRNA are attracting increasing interest for their potential to transfer to the infant and their role in infant development. In this article, we examine some of the various constituents in HBM and review the evidence supporting their associated health effects and their potential applications in human health.

Keywords: human health; human milk; microbiota.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Human breast milk-derived components and their health effects.
Figure 2
Figure 2
Core genera of human breast milk microbiome in several studies [42,43,45,48,50,51].

References

    1. Ballard O., Morrow A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013;60:49–74. doi: 10.1016/j.pcl.2012.10.002.
    1. Kim S.Y., Yi D.Y. Components of human breast milk: From macronutrient to microbiome and microRNA. Clin. Exp. Pediatr. 2020;63:301–309. doi: 10.3345/cep.2020.00059.
    1. Martin C.R., Ling P.R., Blackburn G.L. Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients. 2016;8:279. doi: 10.3390/nu8050279.
    1. Castellote C., Casillas R., Ramírez-Santana C., Pérez-Cano F.J., Castell M., Moretones M.G., López-Sabater M.C., Franch A. Premature delivery influences the immunological composition of colostrum and transitional and mature human milk. J. Nutr. 2011;141:1181–1187. doi: 10.3945/jn.110.133652.
    1. Kim M.H., Shim K.S., Yi D.Y., Lim I.S., Chae S.A., Yun S.W., Lee N.M., Kim S.Y., Kim S. Macronutrient Analysis of Human Milk according to Storage and Processing in Korean Mother. Pediatr. Gastroenterol. Hepatol. Nutr. 2019;22:262–269. doi: 10.5223/pghn.2019.22.3.262.
    1. Ip S., Chung M., Raman G., Chew P., Magula N., DeVine D., Trikalinos T., Lau J. Breastfeeding and maternal and infant health outcomes in developed countries. Evid. Rep. Technol. Assess. 2007;153:1–186.
    1. Agostoni C., Braegger C., Decsi T., Kolacek S., Koletzko B., Michaelsen K.F., Mihatsch W., Moreno L.A., Puntis J., Shamir R., et al. Breast-feeding: A commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2009;49:112–125. doi: 10.1097/MPG.0b013e31819f1e05.
    1. Section on Breastfeeding Breastfeeding and the use of human milk. Pediatrics. 2012;129:e827–e841. doi: 10.1542/peds.2011-3552.
    1. Mosca F., Giannì M.L. Human milk: Composition and health benefits. Pediatr. Med. Chir. 2017;39:155. doi: 10.4081/pmc.2017.155.
    1. Eriksen K.G., Christensen S.H., Lind M.V., Michaelsen K.F. Human milk composition and infant growth. Curr. Opin. Clin. Nutr. Metab. Care. 2018;21:200–206. doi: 10.1097/MCO.0000000000000466.
    1. Andreas N.J., Kampmann B., Mehring Le-Doare K. Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 2015;91:629–635. doi: 10.1016/j.earlhumdev.2015.08.013.
    1. Hester S.N., Hustead D.S., Mackey A.D., Singhal A., Marriage B.J. Is the macronutrient intake of formula-fed infants greater than breast-fed infants in early infancy? J. Nutr. Metab. 2012;2012:891201. doi: 10.1155/2012/891201.
    1. De Luca A., Hankard R., Alexandre-Gouabau M.C., Ferchaud-Roucher V., Darmaun D., Boquien C.Y. Higher concentrations of branched-chain amino acids in breast milk of obese mothers. Nutrition. 2016;32:1295–1298. doi: 10.1016/j.nut.2016.05.013.
    1. Delplanque B., Gibson R., Koletzko B., Lapillonne A., Strandvik B. Lipid Quality in Infant Nutrition: Current Knowledge and Future Opportunities. J. Pediatr. Gastroenterol. Nutr. 2015;61:8–17. doi: 10.1097/MPG.0000000000000818.
    1. Saarela T., Kokkonen J., Koivisto M. Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatr. 2005;94:1176–1181. doi: 10.1111/j.1651-2227.2005.tb02070.x.
    1. Delgado-Noguera M.F., Calvache J.A., Bonfill Cosp X. Supplementation with long chain polyunsaturated fatty acids (LCPUFA) to breastfeeding mothers for improving child growth and development. Cochrane Database Syst. Rev. 2010:Cd007901. doi: 10.1002/14651858.CD007901.pub2.
    1. Peng L., Li Z.R., Green R.S., Holzman I.R., Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 2009;139:1619–1625. doi: 10.3945/jn.109.104638.
    1. Lönnerdal B. Human milk proteins: Key components for the biological activity of human milk. Adv. Exp. Med. Biol. 2004;554:11–25.
    1. Lönnerdal B. Nutritional and physiologic significance of human milk proteins. Am. J. Clin. Nutr. 2003;77:1537s–1543s. doi: 10.1093/ajcn/77.6.1537S.
    1. Telemo E., Hanson L.A. Antibodies in milk. J. Mammary Gland Biol. Neoplasia. 1996;1:243–249. doi: 10.1007/BF02018077.
    1. Lawrence R.M., Lawrence R.A. Breast milk and infection. Clin. Perinatol. 2004;31:501–528. doi: 10.1016/j.clp.2004.03.019.
    1. Gopalakrishna K.P., Macadangdang B.R., Rogers M.B., Tometich J.T., Firek B.A., Baker R., Ji J., Burr A.H.P., Ma C., Good M., et al. Maternal IgA protects against the development of necrotizing enterocolitis in preterm infants. Nat. Med. 2019;25:1110–1115. doi: 10.1038/s41591-019-0480-9.
    1. Lönnerdal B. Bioactive proteins in breast milk. J. Paediatr. Child. Health. 2013;49((Suppl. 1)):1–7. doi: 10.1111/jpc.12104.
    1. Nolan L.S., Parks O.B., Good M. A Review of the Immunomodulating Components of Maternal Breast Milk and Protection Against Necrotizing Enterocolitis. Nutrients. 2019;12:14. doi: 10.3390/nu12010014.
    1. Yarramala D.S., Prakash P., Ranade D.S., Doshi S., Kulkarni P.P., Bhaumik P., Rao C.P. Cytotoxicity of apo bovine α-lactalbumin complexed with La3+ on cancer cells supported by its high resolution crystal structure. Sci. Rep. 2019;9:1780. doi: 10.1038/s41598-018-38024-1.
    1. Ho J.C.S., Nadeem A., Svanborg C. HAMLET—A protein-lipid complex with broad tumoricidal activity. Biochem. Biophys. Res. Commun. 2017;15:454–458. doi: 10.1016/j.bbrc.2016.10.092.
    1. Brisuda A., Ho J.C.S., Kandiyal P.S., Ng J.T., Ambite I., Butler D.S.C., Háček J., Wan M.L.Y., Tran T.H., Nadeem A., et al. Bladder cancer therapy using a conformationally fluid tumoricidal peptide complex. Nat. Commun. 2021;8:3427. doi: 10.1038/s41467-021-23748-y.
    1. Alamiri F., Riesbeck K., Hakansson A.P. HAMLET, a protein complex from human milk has bactericidal activity and enhances the activity of antibiotics against pathogenic Streptococci. Antimicrob. Agents. Chemother. 2019;63:e01193-19. doi: 10.1128/AAC.01193-19.
    1. Grosvenor C.E., Picciano M.F., Baumrucker C.R. Hormones and growth factors in milk. Endocr. Rev. 1993;14:710–728. doi: 10.1210/edrv-14-6-710.
    1. Plaza-Díaz J., Fontana L., Gil A. Human Milk Oligosaccharides and Immune System Development. Nutrients. 2018;10:1038. doi: 10.3390/nu10081038.
    1. Thurl S., Munzert M., Boehm G., Matthews C., Stahl B. Systematic review of the concentrations of oligosaccharides in human milk. Nutr. Rev. 2017;75:920–933. doi: 10.1093/nutrit/nux044.
    1. Moukarzel S., Bode L. Human Milk Oligosaccharides and the Preterm Infant: A Journey in Sickness and in Health. Clin. Perinatol. 2017;44:193–207. doi: 10.1016/j.clp.2016.11.014.
    1. Jantscher-Krenn E., Zherebtsov M., Nissan C., Goth K., Guner Y.S., Naidu N., Choudhury B., Grishin A.V., Ford H.R., Bode L. The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotising enterocolitis in neonatal rats. Gut. 2012;61:1417–1425. doi: 10.1136/gutjnl-2011-301404.
    1. Isaacs C.E., Litov R.E., Thormar H. Antimicrobial activity of lipids added to human milk, infant formula, and bovine milk. J. Nutr. Biochem. 1995;6:362–366. doi: 10.1016/0955-2863(95)80003-U.
    1. Gavin A., Ostovar K. Microbiological Characterization of Human Milk1. J. Food Prot. 1977;40:614–616. doi: 10.4315/0362-028X-40.9.614.
    1. Eidelman A.I., Szilagyi G. Patterns of bacterial colonization of human milk. Obs. Gynecol. 1979;53:550–552.
    1. Jones C. Maternal transmission of infectious pathogens in breast milk. J. Paediatr. Child. Health. 2001;37:576–582. doi: 10.1046/j.1440-1754.2001.00743.x.
    1. Heikkila M.P., Saris P.E. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J. Appl. Microbiol. 2003;95:471–478. doi: 10.1046/j.1365-2672.2003.02002.x.
    1. Martin R., Langa S., Reviriego C., Jiminez E., Marin M.L., Xaus J., Fernandez L., Rodriguez J.M. Human milk is a source of lactic acid bacteria for the infant gut. J. Pediatrics. 2003;143:754–758. doi: 10.1016/j.jpeds.2003.09.028.
    1. Collado M.C., Delgado S., Maldonado A., Rodriguez J.M. Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Lett. Appl. Microbiol. 2009;48:523–528. doi: 10.1111/j.1472-765X.2009.02567.x.
    1. Martin R., Jimenez E., Heilig H., Fernandez L., Marin M.L., Zoetendal E.G., Rodriguez J.M. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl. Environ. Microbiol. 2009;75:965–969. doi: 10.1128/AEM.02063-08.
    1. Hunt K.M., Foster J.A., Forney L.J., Schutte U.M., Beck D.L., Abdo Z., Fox L.K., Williams J.E., McGuire M.K., McGuire M.A. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE. 2011;6:e21313. doi: 10.1371/journal.pone.0021313.
    1. Jost T., Lacroix C., Braegger C., Chassard C. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br. J. Nutr. 2013;110:1253–1262. doi: 10.1017/S0007114513000597.
    1. Olivares M., Diaz-Ropero M.P., Martin R., Rodriguez J.M., Xaus J. Antimicrobial potential of four Lactobacillus strains isolated from breast milk. J. Appl. Microbiol. 2006;101:72–79. doi: 10.1111/j.1365-2672.2006.02981.x.
    1. Fitzstevens J.L., Smith K.C., Hagadorn J.I., Caimano M.J., Matson A.P., Brownell E.A. Systematic Review of the Human Milk Microbiota. Nutr. Clin. Pract. 2017;32:354–364. doi: 10.1177/0884533616670150.
    1. Togo A., Dufour J.C., Lagier J.C., Dubourg G., Raoult D., Million M. Repertoire of human breast and milk microbiota: A systematic review. Future Microbiol. 2019;14:623–641. doi: 10.2217/fmb-2018-0317.
    1. Asnicar F., Manara S., Zolfo M., Truong D.T., Scholz M., Armanini F., Ferretti P., Gorfer V., Pedrotti A., Tett A., et al. Studying Vertical Microbiome Transmission from Mothers to Infants by Strain-Level Metagenomic Profiling. mSystems. 2017;2 doi: 10.1128/mSystems.00164-16.
    1. Murphy K., Curley D., O’Callaghan T.F., O’Shea C.A., Dempsey E.M., O’Toole P.W., Ross R.P., Ryan C.A., Stanton C. The Composition of Human Milk and Infant Faecal Microbiota over the First Three Months of Life: A Pilot Study. Sci. Rep. 2017;7:40597. doi: 10.1038/srep40597.
    1. Shin D.Y., Park J., Yi D.Y. Comprehensive Analysis of the Effect of Probiotic Intake by the Mother on Human Breast Milk and Infant Fecal Microbiota. J. Korean Med. Sci. 2021;36:e58. doi: 10.3346/jkms.2021.36.e58.
    1. Moossavi S., Sepehri S., Robertson B., Bode L., Goruk S., Field C.J., Lix L.M., de Souza R.J., Becker A.B., Mandhane P.J., et al. Composition and Variation of the Human Milk Microbiota Are Influenced by Maternal and Early-Life Factors. Cell Host Microbe. 2019;25:324–335.e324. doi: 10.1016/j.chom.2019.01.011.
    1. Zimmermann P., Curtis N. Breast milk microbiota: A review of the factors that influence composition. J. Infect. 2020;81:17–47. doi: 10.1016/j.jinf.2020.01.023.
    1. Pannaraj P.S., Li F., Cerini C., Bender J.M., Yang S., Rollie A., Adisetiyo H., Zabih S., Lincez P.J., Bittinger K., et al. Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA Pediatrics. 2017;171:647–654. doi: 10.1001/jamapediatrics.2017.0378.
    1. Kordy K., Gaufin T., Mwangi M., Li F., Cerini C., Lee D.J., Adisetiyo H., Woodward C., Pannaraj P.S., Tobin N.H., et al. Contributions to human breast milk microbiome and enteromammary transfer of Bifidobacterium breve. PLoS ONE. 2020;15:e0219633. doi: 10.1371/journal.pone.0219633.
    1. Ramsay D.T., Kent J.C., Owens R.A., Hartmann P.E. Ultrasound imaging of milk ejection in the breast of lactating women. Pediatrics. 2004;113:361–367. doi: 10.1542/peds.113.2.361.
    1. Rescigno M., Urbano M., Valzasina B., Francolini M., Rotta G., Bonasio R., Granucci F., Kraehenbuhl J.-P., Ricciardi-Castagnoli P. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2001;2:361–367. doi: 10.1038/86373.
    1. Macpherson A.J., Uhr T. Induction of Protective IgA by Intestinal Dendritic Cells Carrying Commensal Bacteria. Science. 2004;303:1662–1665. doi: 10.1126/science.1091334.
    1. Cabrera-Rubio R., Collado M.C., Laitinen K., Salminen S., Isolauri E., Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 2012;96:544–551. doi: 10.3945/ajcn.112.037382.
    1. Jost T., Lacroix C., Braegger C.P., Rochat F., Chassard C. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ. Microbiol. 2014;16:2891–2904. doi: 10.1111/1462-2920.12238.
    1. Yatsunenko T., Rey F.E., Manary M.J., Trehan I., Dominguez-Bello M.G., Contreras M., Magris M., Hidalgo G., Baldassano R.N., Anokhin A.P., et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–227. doi: 10.1038/nature11053.
    1. Milani C., Mancabelli L., Lugli G.A., Duranti S., Turroni F., Ferrario C., Mangifesta M., Viappiani A., Ferretti P., Gorfer V., et al. Exploring Vertical Transmission of Bifidobacteria from Mother to Child. Appl. Environ. Microbiol. 2015;81:7078–7087. doi: 10.1128/AEM.02037-15.
    1. Jara S., Sánchez M., Vera R., Cofré J., Castro E. The inhibitory activity of Lactobacillus spp. isolated from breast milk on gastrointestinal pathogenic bacteria of nosocomial origin. Anaerobe. 2011;17:474–477. doi: 10.1016/j.anaerobe.2011.07.008.
    1. Nantavisai K., Puttikamonkul S., Chotelersak K., Taweechotipatr M. In Vitro Adhesion Property and Competition against Enteropathogens of Lactobacillus Strains Isolated from Thai Infants. Songklanakarin J. Sci. Technol. 2018;40:69–74.
    1. Turroni F., Peano C., Pass D.A., Foroni E., Severgnini M., Claesson M.J., Kerr C., Hourihane J., Murray D., Fuligni F. Diversity of bifidobacteria within the infant gut microbiota. PLoS ONE. 2012;7:e36957. doi: 10.1371/journal.pone.0036957.
    1. Zimmermann P., Curtis N. Factors influencing the intestinal microbiome during the first year of life. Pediatric Infect. Dis. J. 2018;37:e315–e335. doi: 10.1097/INF.0000000000002103.
    1. Kim S.Y., Yi D.Y. Analysis of the human breast milk microbiome and bacterial extracellular vesicles in healthy mothers. Exp. Mol. Med. 2020;52:1288–1297. doi: 10.1038/s12276-020-0470-5.
    1. Kim K.U., Kim W.H., Jeong C.H., Yi D.Y., Min H. More than Nutrition: Therapeutic Potential of Breast Milk-Derived Exosomes in Cancer. Int. J. Mol. Sci. 2020;21:7327. doi: 10.3390/ijms21197327.
    1. Shen Y., Giardino Torchia M.L., Lawson G.W., Karp C.L., Ashwell J.D., Mazmanian S.K. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe. 2012;12:509–520. doi: 10.1016/j.chom.2012.08.004.
    1. Bryant W.A., Stentz R., Le Gall G., Sternberg M.J.E., Carding S.R., Wilhelm T. In Silico Analysis of the Small Molecule Content of Outer Membrane Vesicles Produced by Bacteroides thetaiotaomicron Indicates an Extensive Metabolic Link between Microbe and Host. Front. Microbiol. 2017;8:2440. doi: 10.3389/fmicb.2017.02440.
    1. Halloran K., Underwood M.A. Probiotic mechanisms of action. Early Hum. Dev. 2019;135:58–65. doi: 10.1016/j.earlhumdev.2019.05.010.
    1. Cullinane M., Amir L.H. In Response to “Microbial Diversity in Milk of Women With Mastitis: Potential Role of Coagulase-Negative Staphylococci, Viridans Group Streptococci, and Corynebacteria”. J. Hum. Lact. 2017;33:815–816. doi: 10.1177/0890334417726058.
    1. Delgado S., Arroyo R., Martín R., Rodríguez J.M. PCR-DGGE assessment of the bacterial diversity of breast milk in women with lactational infectious mastitis. BMC Infect. Dis. 2008;8:51. doi: 10.1186/1471-2334-8-51.
    1. Delgado S., Arroyo R., Jiménez E., Marín M.L., del Campo R., Fernández L., Rodríguez J.M. Staphylococcus epidermidis strains isolated from breast milk of women suffering infectious mastitis: Potential virulence traits and resistance to antibiotics. BMC Microbiol. 2009;9:82. doi: 10.1186/1471-2180-9-82.
    1. Patel S.H., Vaidya Y.H., Patel R.J., Pandit R.J., Joshi C.G., Kunjadiya A.P. Culture independent assessment of human milk microbial community in lactational mastitis. Sci. Rep. 2017;7:7804. doi: 10.1038/s41598-017-08451-7.
    1. Urbaniak C., Gloor G.B., Brackstone M., Scott L., Tangney M., Reid G. The Microbiota of Breast Tissue and Its Association with Breast Cancer. Appl. Environ. Microbiol. 2016;82:5039–5048. doi: 10.1128/AEM.01235-16.
    1. Rashed M.H., Bayraktar E., Helal G.K., Abd-Ellah M.F., Amero P., Chavez-Reyes A., Rodriguez-Aguayo C. Exosomes: From Garbage Bins to Promising Therapeutic Targets. Int. J. Mol. Sci. 2017;18:538. doi: 10.3390/ijms18030538.
    1. Hessvik N.P., Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol. Life Sci. 2018;75:193–208. doi: 10.1007/s00018-017-2595-9.
    1. Vlassov A.V., Magdaleno S., Setterquist R., Conrad R. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta. 2012;1820:940–948. doi: 10.1016/j.bbagen.2012.03.017.
    1. Reif S., Elbaum Shiff Y., Golan-Gerstl R. Milk-derived exosomes (MDEs) have a different biological effect on normal fetal colon epithelial cells compared to colon tumor cells in a miRNA-dependent manner. J. Transl. Med. 2019;17:325. doi: 10.1186/s12967-019-2072-3.
    1. Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811. doi: 10.1038/35888.
    1. Bartel D.P. MicroRNAs: Target recognition and regulatory functions. Cell. 2009;136:215–233. doi: 10.1016/j.cell.2009.01.002.
    1. Mollaei H., Safaralizadeh R., Rostami Z. MicroRNA replacement therapy in cancer. J. Cell Physiol. 2019;234:12369–12384. doi: 10.1002/jcp.28058.
    1. Rupaimoole R., Slack F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017;16:203–222. doi: 10.1038/nrd.2016.246.
    1. Alsaweed M., Hartmann P.E., Geddes D.T., Kakulas F. MicroRNAs in Breastmilk and the Lactating Breast: Potential Immunoprotectors and Developmental Regulators for the Infant and the Mother. Int. J. Environ. Res. Public Health. 2015;12:13981–14020. doi: 10.3390/ijerph121113981.
    1. Melnik B.C., Schmitz G. MicroRNAs: Milk’s epigenetic regulators. Best Pr. Res. Clin. Endocrinol. Metab. 2017;31:427–442. doi: 10.1016/j.beem.2017.10.003.
    1. Aryal B., Singh A.K., Rotllan N., Price N., Fernández-Hernando C. MicroRNAs and lipid metabolism. Curr. Opin. Lipidol. 2017;28:273–280. doi: 10.1097/MOL.0000000000000420.
    1. Fernández-Hernando C., Suárez Y., Rayner K.J., Moore K.J. MicroRNAs in lipid metabolism. Curr. Opin. Lipidol. 2011;22:86–92. doi: 10.1097/MOL.0b013e3283428d9d.
    1. Aksoy-Aksel A., Zampa F., Schratt G. MicroRNAs and synaptic plasticity--a mutual relationship. Philos Trans. R Soc. Lond B Biol. Sci. 2014;369:20130515. doi: 10.1098/rstb.2013.0515.
    1. Carrillo-Lozano E., Sebastián-Valles F., Knott-Torcal C. Circulating microRNAs in Breast Milk and Their Potential Impact on the Infant. Nutrients. 2020;12:3066. doi: 10.3390/nu12103066.

Source: PubMed

3
Tilaa