Effect of Scalp Nerve Block Combined with Intercostal Nerve Block on the Quality of Recovery in Patients with Parkinson's Disease after Deep Brain Stimulation: Protocol for a Randomized Controlled Trial

Ying Sheng, Hui Wang, Xinning Chang, Peipei Jin, Shengwei Lin, Shuang Qian, Jian Xie, Wenbin Lu, Xiya Yu, Ying Sheng, Hui Wang, Xinning Chang, Peipei Jin, Shengwei Lin, Shuang Qian, Jian Xie, Wenbin Lu, Xiya Yu

Abstract

Background: Parkinson's disease (PD) patients who receive deep brain stimulation (DBS) have a higher risk of postoperative pain, which will affect their postoperative quality of recovery (QoR). Scalp nerve block (SNB) and intercostal nerve block (ICNB) can alleviate postoperative pain, yet their effect on postoperative QoR in PD patients has proven to be unclear. Therefore, we have aimed to explore the effect of SNB paired with ICNB on postoperative QoR.

Methods: To explore the effect, we have designed a randomized controlled trial in which 88 patients with PD will be randomly assigned to either an SNB group or control group, receiving either SNB combined with ICNB or without before surgery. The primary outcome will be a 15-item QoR score at 24 h after surgery. The secondary outcomes will include: 15-item QoR scores at 72 h and 1 month after surgery; the numeric rating scale pain scores before discharge from the postanesthesia care unit (PACU) at 24 h, 72 h, and 1 month after surgery; rescue analgesics; nausea and vomiting 24 h after operation and remifentanil consumption during operation; emergence agitation; the duration of anesthesia and surgery; time to respiratory recovery, time to response, and time to extubation; the PACU length of stay; as well as adverse events. Proposed protocol and conclusion: Our findings will provide a novel method for the management of recovery and acute pain after DBS in PD patients. This research was registered at clinicaltrials.gov NCT05353764 on 19 April 2022.

Keywords: Parkinson’s disease; deep brain stimulation; intercostal nerve block; postoperative analgesia; quality of recovery; scalp nerve block.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow chart of participants in the trial.

References

    1. Shkodina A., Tan S., Hasan M., Abdelgawad M., Chopra H., Bilal M., Boiko D.I., Tarianyk K.A., Alexiou A. Roles of clock genes in the pathogenesis of Parkinson’s disease. Ageing Res.Rev. 2022;74:101554. doi: 10.1016/j.arr.2021.101554.
    1. Diederich N., Uchihara T., Grillner S., Goetz C. The Evolution-Driven Signature of Parkinson’s Disease. Trends Neurosci. 2020;43:475–492. doi: 10.1016/j.tins.2020.05.001.
    1. Aarsland D., Batzu L., Halliday G., Geurtsen G., Ballard C., Ray Chaudhuri K., Weintraub D. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Prim. 2021;7:47. doi: 10.1038/s41572-021-00280-3.
    1. Fanciulli A., Wenning G. Autonomic failure: A neglected presentation of Parkinson’s disease. Lancet Neurol. 2021;20:781–782. doi: 10.1016/S1474-4422(21)00292-1.
    1. Bloem B., Okun M., Klein C. Parkinson’s disease. Lancet. 2021;397:2284–2303. doi: 10.1016/S0140-6736(21)00218-X.
    1. Surguchov A. Biomarkers in Parkinson’s Disease. In: Peplow P.V., Martinez B., Gennarelli T.A., editors. Neurodegenerative Diseases Biomarkers: Towards Translating Research to Clinical Practice. Springer; New York, NY, USA: 2022. pp. 155–180.
    1. Krauss J., Lipsman N., Aziz T., Boutet A., Brown P., Chang J., Davidson B., Grill W.M., Hariz M.I., Horn A., et al. Technology of deep brain stimulation: Current status and future directions. Nat. Rev. Neurol. 2021;17:75–87. doi: 10.1038/s41582-020-00426-z.
    1. Ashkan K., Rogers P., Bergman H., Ughratdar I. Insights into the mechanisms of deep brain stimulation. Nat. Rev. Neurol. 2017;13:548–554. doi: 10.1038/nrneurol.2017.105.
    1. Jung Y., Kim H., Jeon B., Park H., Lee W., Paek S. An 8-Year Follow-Up on the Effect of Subthalamic Nucleus Deep Brain Stimulation on Pain in Parkinson Disease. JAMA Neurol. 2015;72:504–510. doi: 10.1001/jamaneurol.2015.8.
    1. Pereira E., Aziz T. Neuropathic pain and deep brain stimulation. Neurotherap. J. Am. Soc. Exp. NeuroTherap. 2014;11:496–507. doi: 10.1007/s13311-014-0278-x.
    1. Yim R., Leung K., Poon C., Irwin M. Peri-operative management of patients with Parkinson’s disease. Anaesthesia. 2022;77:123–133. doi: 10.1111/anae.15617.
    1. Canıtez A., Kozanhan B., Aksoy N., Yildiz M., Tutar M.S. Effect of erector spinae plane block on the postoperative quality of recovery after laparoscopic cholecystectomy: A prospective double-blind study. Br. J. Anaesth. 2021;127:629–635. doi: 10.1016/j.bja.2021.06.030.
    1. Dunbar P.J., Visco E., Lam A.M. Craniotomy procedures are associated with less analgesic requirements than other surgical procedures. Anesth. Analg. 1999;88:335–340. doi: 10.1213/00000539-199902000-00021.
    1. Kulikov A., Tere V., Sergi P.G., Pugliese F., Lubnin A., Bilotta F. Preoperative versus Postoperative Scalp Block Combined with Incision Line Infiltration for Pain Control after Supratentorial Craniotomy. Clin. J. Pain. 2021;37:194–198. doi: 10.1097/AJP.0000000000000905.
    1. Nguyen A., Girard F., Boudreault D., Fugère F., Ruel M., Moumdjian R., Bouthilier A., Caron J.L., Bojanowski M.W., Girard D.C. Scalp nerve blocks decrease the severity of pain after craniotomy. Anesth. Analg. 2001;93:1272–1276. doi: 10.1097/00000539-200111000-00048.
    1. Sato T., Okumura T., Nishiwaki K. Preanesthesia scalp blocks reduce intraoperative pain and hypertension in the asleep-awake-asleep method of awake craniotomy: A retrospective study. J. Clin. Anesth. 2020;66:109946. doi: 10.1016/j.jclinane.2020.109946.
    1. Barreveld A.M., McCarthy R.J., Elkassabany N., Mariano E.R., Sites B., Ghosh R., Buvanendran A. Opioid Stewardship Program and Postoperative Adverse Events: A Difference-in-differences Cohort Study. Anesthesiology. 2020;132:1558–1568. doi: 10.1097/ALN.0000000000003238.
    1. Yang Y., Ou M., Zhou H., Tan L., Hu Y., Li Y., Zhu T. Effect of Scalp Nerve Block with Ropivacaine on Postoperative Pain in Patients Undergoing Craniotomy: A Randomized, Double Blinded Study. Sci. Rep. 2020;10:2529. doi: 10.1038/s41598-020-59370-z.
    1. Papangelou A., Radzik B.R., Smith T., Gottschalk A. A review of scalp blockade for cranial surgery. J. Clin. Anesth. 2013;25:150–159. doi: 10.1016/j.jclinane.2012.06.024.
    1. Jayaram K., Srilata M., Kulkarni D., Ramachandran G. Regional Anesthesia to Scalp for Craniotomy: Innovation with Innervation. J. Neurosurg. Anesthesiol. 2016;28:32–37. doi: 10.1097/ANA.0000000000000184.
    1. Chen N., Qiao Q., Chen R., Xu Q., Zhang Y., Tian Y. The effect of ultrasound-guided intercostal nerve block, single-injection erector spinae plane block and multiple-injection paravertebral block on postoperative analgesia in thoracoscopic surgery: A randomized, double-blinded, clinical trial. J. Clin. Anesth. 2020;59:106–111. doi: 10.1016/j.jclinane.2019.07.002.
    1. Chaki T., Sugino S., Janicki P.K., Ishioka Y., Hatakeyama Y., Hayase T., Kaneuchi-Yamashita M., Kohri N., Yamakage M. Efficacy and Safety of a Lidocaine and Ropivacaine Mixture for Scalp Nerve Block and Local Infiltration Anesthesia in Patients Undergoing Awake Craniotomy. J. Neurosurg. Anesthesiol. 2016;28:1–5. doi: 10.1097/ANA.0000000000000149.
    1. Altıparmak B., Korkmaz Toker M., Uysal A., Dere Ö., Uğur B. Evaluation of ultrasound-guided rhomboid intercostal nerve block for postoperative analgesia in breast cancer surgery: A prospective, randomized controlled trial. Reg. Anesth. Pain Med. 2020;45:277–282. doi: 10.1136/rapm-2019-101114.
    1. Kleif J., Waage J., Christensen K.B., Gögenur I. Systematic review of the QoR-15 score, a patient-reported outcome measure measuring quality of recovery after surgery and anaesthesia. Br. J. Anaesth. 2018;120:28–36. doi: 10.1016/j.bja.2017.11.013.
    1. Calvert M., Kyte D., Mercieca-Bebber R., Slade A., Chan A., King M., Hunn A., Bottomley A., Regnault A., Ells C., et al. Guidelines for Inclusion of Patient-Reported Outcomes in Clinical Trial Protocols: The SPIRIT-PRO Extension. JAMA. 2018;319:483–494. doi: 10.1001/jama.2017.21903.
    1. Myles P.S., Myles D.B., Galagher W., Chew C., MacDonald N., Dennis A. Minimal Clinically Important Difference for Three Quality of Recovery Scales. Anesthesiology. 2016;125:39–45. doi: 10.1097/ALN.0000000000001158.

Source: PubMed

3
Tilaa