Chairside Fabrication of an All-Ceramic Partial Crown Using a Zirconia-Reinforced Lithium Silicate Ceramic

Sven Rinke, Anne-Kathrin Pabel, Matthias Rödiger, Dirk Ziebolz, Sven Rinke, Anne-Kathrin Pabel, Matthias Rödiger, Dirk Ziebolz

Abstract

The chairside fabrication of a monolithic partial crown using a zirconia-reinforced lithium silicate (ZLS) ceramic is described. The fully digitized model-free workflow in a dental practice is possible due to the use of a powder-free intraoral scanner and the computer-aided design/computer-assisted manufacturing (CAD/CAM) of the restorations. The innovative ZLS material offers a singular combination of fracture strength (>370 Mpa), optimum polishing characteristics, and excellent optical properties. Therefore, this ceramic is an interesting alternative material for monolithic restorations produced in a digital workflow.

Figures

Figure 1
Figure 1
Insufficient cast gold inlay on a lower second premolar.
Figure 2
Figure 2
Minimum material thickness recommended for all-ceramic partial crowns fabricated from zirconia-reinforced lithium silicate (ZLS) ceramics.
Figure 3
Figure 3
Finished preparation with retraction cords placed.
Figure 4
Figure 4
Intraoral scans with marked preparation line and design suggestion generated with the CEREC software (version 4.2).
Figure 5
Figure 5
Adjustment of the occlusal and proximal contacts.
Figure 6
Figure 6
Wet grinding process of the partial crown using the CEREC MXCL (Sirona Bensheim, Germany) unit.
Figure 7
Figure 7
Postprocessing of the occlusal surface and prepolishing using a diamond-impregnated polyurethane polisher.
Figure 8
Figure 8
Try-in of the prepolished partial crown.
Figure 9
Figure 9
Application of the glazing material.
Figure 10
Figure 10
Instruments and material for the mirror finish of the restoration.
Figure 11
Figure 11
Conditioning of the ceramic restoration using 5% hydrofluoric (Vita Ceramics Etch, Vita Zahnfabrik, Bad Säckingen, Germany) acid and a silane coupling agent (Calibra Silane, Dentsply DeTrey, Konstanz, Germany).
Figure 12
Figure 12
Adhesive cementation of the restoration after rubber dam application.
Figure 13
Figure 13
Clinical situation two days after adhesive cementation.

References

    1. Fasbinder D. Using digital technology to enhance restorative dentistry. Compendium of Continuing Education in Dentistry. 2012;33(9):666–672.
    1. Poticny D. J., Klim J. CAD/CAM in-office technology: innovations after 25 years for predictable, esthetic outcomes. Journal of the American Dental Association. 2010;141, supplement 2:5S–9S.
    1. Baroudi K., Ibraheem S. N. Assessment of chair-side computer-aided design and computer-aided manufacturing restorations: a review of the literature. Journal of International Oral Health. 2015;7(4):96–104.
    1. Ting-shu S., Jian S. Intraoral digital impression technique: a review. Journal of Prosthodontics. 2015;24(4):313–321. doi: 10.1111/jopr.12218.
    1. Wittneben J.-G., Wright R. F., Weber H.-P., Gallucci G. O. A systematic review of the clinical performance of CAD/CAM single-tooth restorations. International Journal of Prosthodontics. 2009;22(5):466–471.
    1. Fasbinder D. J. Clinical performance of chairside CAD/CAM restorations. Journal of the American Dental Association. 2006;137:22S–31S.
    1. Otto T., Schneider D. Long-term clinical results of chairside Cerec CAD/CAM inlays and onlays: a case series. International Journal of Prosthodontics. 2008;21(1):53–59.
    1. Li R. W. K., Chow T. W., Matinlinna J. P. Ceramic dental biomaterials and CAD/CAM technology: state of the art. Journal of Prosthodontic Research. 2014;58(4):208–216. doi: 10.1016/j.jpor.2014.07.003.
    1. Reich S., Schierz O. Chair-side generated posterior lithium disilicate crowns after 4 years. Clinical Oral Investigations. 2013;17(7):1765–1772. doi: 10.1007/s00784-012-0868-0.
    1. Pieger S., Salman A., Bidra A. S. Clinical outcomes of lithium disilicate single crowns and partial fixed dental prostheses: a systematic review. Journal of Prosthetic Dentistry. 2014;112(1):22–30. doi: 10.1016/j.prosdent.2014.01.005.
    1. Denry I., Kelly J. R. Emerging ceramic-based materials for dentistry. Journal of Dental Research. 2014;93(12):1235–1242. doi: 10.1177/0022034514553627.
    1. Krüger S., Deubener J., Ritzberger C., Höland W. Nucleation kinetics of lithium metasilicate in ZrO2-bearing lithium disilicate glasses for dental application. International Journal of Applied Glass Science. 2013;4(1):9–19. doi: 10.1111/ijag.12011.
    1. Preis V., Behr M., Hahnel S., Rosentritt M. Influence of cementation on in vitro performance, marginal adaptation and fracture resistance of CAD/CAM-fabricated ZLS molar crowns. Dental Materials. 2015;31(11):1363–1369. doi: 10.1016/j.dental.2015.08.154.
    1. Awad D., Stawarczyk B., Liebermann A., Ilie N. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness. The Journal of Prosthetic Dentistry. 2015;113(6):534–540. doi: 10.1016/j.prosdent.2014.12.003.
    1. D'Arcangelo C., Vanini L., Rondoni G. D., De Angelis F. Wear properties of dental ceramics and porcelains compared with human enamel. The Journal of Prosthetic Dentistry. 2016;115(3):350–355. doi: 10.1016/j.prosdent.2015.09.010.
    1. Frankenberger R., Hartmann V. E., Krech M., et al. Adhesive luting of new CAD/CAM materials. International Journal of Computerized Dentistry. 2015;18(1):9–20. (Ger).
    1. Ahlers M. O., Mörig G., Blunck U., Hajtó J., Pröbster L., Frankenberger R. Guidelines for the preparation of CAD/CAM ceramic inlays and partial crowns. International Journal of Computerized Dentistry. 2009;12(4):309–325.

Source: PubMed

3
Tilaa