CICAFAST: comparison of a biological dressing composed of fetal fibroblasts and keratinocytes on a split-thickness skin graft donor site versus a traditional dressing: a randomized controlled trial

Alexandra Poinas, Pierre Perrot, Judith Lorant, Olivier Nerrière, Jean-Michel Nguyen, Soraya Saiagh, Cécile Frenard, Audrey Leduc, Olivier Malard, Florent Espitalier, Franck Duteille, Anne Chiffoleau, Florence Vrignaud, Amir Khammari, Brigitte Dréno, Alexandra Poinas, Pierre Perrot, Judith Lorant, Olivier Nerrière, Jean-Michel Nguyen, Soraya Saiagh, Cécile Frenard, Audrey Leduc, Olivier Malard, Florent Espitalier, Franck Duteille, Anne Chiffoleau, Florence Vrignaud, Amir Khammari, Brigitte Dréno

Abstract

Background: Wound repair is one of the most complex biological processes of human life. Allogeneic cell-based engineered skin substitutes provide off-the-shelf temporary wound coverage and act as biologically active dressings, releasing growth factors, cytokines and extracellular matrix components essential for proper wound healing. However, they are susceptible to immune rejection and this is their major weakness. Thanks to their low immunogenicity and high effectiveness in regeneration, fetal skin cells represent an attractive alternative to the commonly used autologous and allogeneic skin grafts.

Methods/design: We developed a new dressing comprising a collagen matrix seeded with a specific ratio of active fetal fibroblasts and keratinocytes. These produce a variety of healing growth factors and cytokines which will increase the speed of wound healing and induce an immunotolerant state, with a slight inflammatory reaction and a reduction in pain. The objective of this study is to demonstrate that the use of this biological dressing for wound healing at the split-thickness skin graft (STSG) donor site, reduces the time to healing, decreases other co-morbidities, such as pain, and improves the appearance of the scar. This investigation will be conducted as part of a randomized study comparing our new biological dressing with a conventional treatment in a single patient, thus avoiding the factors that may influence the healing of a graft donor site.

Discussion: This clinical trial should enable the development of a new strategy for STSG donor-wound healing based on a regenerative dressing. The pain experienced in the first few days of STSG healing is well known due to the exposure of sensory nerve endings. Reducing this pain will also reduce analgesic drug intake and the duration of sick leave. Our biological dressing will meet the essential need of surgeons to "re-crop" from existing donor sites, e.g., for thermal-burn patients. By accelerating healing, improving the appearance of the scar and reducing pain, we hope to improve the conditions of treatment for skin grafts.

Trial registration: ClinicalTrials.gov, ID: NCT03334656 . Registered on 7 November 2017.

Keywords: Biological dressing; Fetal cells; Randomized clinical trial; Split-thickness skin graft; Wound healing.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study diagram

References

    1. Peck MD. Epidemiology of burns throughout the world. Part I: Distribution and risk factors. Burns. 2011;37:1087–1100. doi: 10.1016/j.burns.2011.06.005.
    1. Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science. 2014;346:941–945. doi: 10.1126/science.1253836.
    1. Brady SC, Snelling CF, Chow G. Comparison of donor site dressings. Ann Plast Surg. 1980;5:238–243. doi: 10.1097/00000637-198009000-00013.
    1. Voineskos SH, Ayeni OA, McKnight L, Thoma A. Systematic review of skin graft donor-site dressings. Plast Reconstr Surg. 2009;124:298–306. doi: 10.1097/PRS.0b013e3181a8072f.
    1. Serebrakian AT, Pickrell BB, Varon DE, Mohamadi A, Grinstaff MW, Rodriguez EK, et al. Meta-analysis and systematic review of skin graft donor-site dressings with future guidelines. Plast Reconstr Surg Glob Open. 2018;6:e1928. doi: 10.1097/GOX.0000000000001928.
    1. Clark RAF, Ghosh K, Tonnesen MG. Tissue engineering for cutaneous wounds. J Invest Dermatol. 2007;127:1018–1029. doi: 10.1038/sj.jid.5700715.
    1. Shakespeare PG. The role of skin substitutes in the treatment of burn injuries. Clin Dermatol. 2005;23:413–418. doi: 10.1016/j.clindermatol.2004.07.015.
    1. MacNeil S. Progress and opportunities for tissue-engineered skin. Nature. 2007;445:874–880. doi: 10.1038/nature05664.
    1. Mansbridge JN. Tissue-engineered skin substitutes in regenerative medicine. Curr Opin Biotechnol. 2009;20:563–567. doi: 10.1016/j.copbio.2009.08.008.
    1. Priya SG, Jungvid H, Kumar A. Skin tissue engineering for tissue repair and regeneration. Tissue Eng Part B Rev. 2008;14:105–118. doi: 10.1089/teb.2007.0318.
    1. Still J, Glat P, Silverstein P, Griswold J, Mozingo D. The use of a collagen sponge/living cell composite material to treat donor sites in burn patients. Burns. 2003;29:837–841. doi: 10.1016/S0305-4179(03)00164-5.
    1. Kirsner RS. The use of Apligraf in acute wounds. J Dermatol. 1998;25:805–811.
    1. Mcheik JN, Barrault C, Levard G, Morel F, Bernard F-X, Lecron J-C. Epidermal healing in burns: autologous keratinocyte transplantation as a standard procedure: update and perspective. Plast Reconstr Surg Glob Open. 2014;2:e218. doi: 10.1097/GOX.0000000000000176.
    1. He C, Heeger PS. CD8 T cells can reject major histocompatibility complex class I-deficient skin allografts. Am J Transplant. 2004;4:698–704. doi: 10.1111/j.1600-6143.2004.00416.x.
    1. Funeshima-Fuji N, Fujino M, Kimura H, Takahara S, Nakayama T, Ezaki T, et al. Survival of skin allografts is prolonged in mice with a dominant-negative H-Ras. Transpl Immunol. 2008;18:302–306. doi: 10.1016/j.trim.2007.10.009.
    1. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453:314–321. doi: 10.1038/nature07039.
    1. Rowlatt U. Intrauterine wound healing in a 20 week human fetus. Virchows Arch A Pathol Anat Histol. 1979;381:353–361. doi: 10.1007/BF00432477.
    1. Armstrong JR, Ferguson MW. Ontogeny of the skin and the transition from scar-free to scarring phenotype during wound healing in the pouch young of a marsupial, Monodelphis domestica. Dev Biol. 1995;169:242–260. doi: 10.1006/dbio.1995.1141.
    1. Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci. 2015;282 Available from: . Accessed on 14 Aug 2019.
    1. Longaker MT, Whitby DJ, Ferguson MW, Lorenz HP, Harrison MR, Adzick NS. Adult skin wounds in the fetal environment heal with scar formation. Ann Surg. 1994;219:65–72. doi: 10.1097/00000658-199401000-00011.
    1. Lorant J, Poinas A, Nerriere O, Vrignaud F, Frénard C, Khammari A, Dréno B,. Fetal skin cells in skin wound healing: a promising tool for clinical applications. Accepted for publication in the European Journal of Dermatology.
    1. Liechty KW, Crombleholme TM, Cass DL, Martin B, Adzick NS. Diminished interleukin-8 (IL-8) production in the fetal wound healing response. J Surg Res. 1998;77:80–84. doi: 10.1006/jsre.1998.5345.
    1. Liechty KW, Adzick NS, Crombleholme TM. Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine. 2000;12:671–676. doi: 10.1006/cyto.1999.0598.
    1. Nodder S, Martin P. Wound healing in embryos: a review. Anat Embryol. 1997;195:215–228. doi: 10.1007/s004290050041.
    1. Shiraha H, Gupta K, Drabik K, Wells A. Aging fibroblasts present reduced epidermal growth factor (EGF) responsiveness due to preferential loss of EGF receptors. J Biol Chem. 2000;275:19343–19351. doi: 10.1074/jbc.M000008200.
    1. Merkel JR, DiPaolo BR, Hallock GG, Rice DC. Type I and type III collagen content of healing wounds in fetal and adult rats. Proc Soc Exp Biol Med. 1988;187:493–497. doi: 10.3181/00379727-187-42694.
    1. Rennert RC, Sorkin M, Garg RK, Januszyk M, Gurtner GC. Cellular response to a novel fetal acellular collagen matrix: implications for tissue regeneration. Int J Biomater. 2013;2013:527957. doi: 10.1155/2013/527957.
    1. Lorenz HP, Longaker MT, Perkocha LA, Jennings RW, Harrison MR, Adzick NS. Scarless wound repair: a human fetal skin model. Development. 1992;114:253–259.
    1. Zuliani T, Saiagh S, Knol A-C, Esbelin J, Dréno B. Fetal fibroblasts and keratinocytes with immunosuppressive properties for allogeneic cell-based wound therapy. Hotchin NA, editor. PLoS ONE. 2013;8:e70408. doi: 10.1371/journal.pone.0070408.
    1. Weber RS, Hankins P, Limitone E, Callender D, Frankenthaler RM, Wolf P, et al. Split-thickness skin graft donor site management. A randomized prospective trial comparing a hydrophilic polyurethane absorbent foam dressing with a petrolatum gauze dressing. Arch Otolaryngol Head Neck Surg. 1995;121:1145–1149. doi: 10.1001/archotol.1995.01890100055009.
    1. Draaijers LJ, Tempelman FRH, Botman YAM, Tuinebreijer WE, Middelkoop E, Kreis RW, et al. The Patient and Observer Scar Assessment Scale: a reliable and feasible tool for scar evaluation. Plast Reconstr Surg. 2004;113:1960–1965. doi: 10.1097/01.PRS.0000122207.28773.56.
    1. Levenson SM, Geever EF, Crowley LV, Oates JF, Berard CW, Rosen H. The healing of rat skin wounds. Ann Surg. 1965;161:293–308. doi: 10.1097/00000658-196502000-00019.
    1. van de Kar AL, Corion LUM, Smeulders MJC, Draaijers LJ, van der Horst CMAM, van Zuijlen PPM. Reliable and feasible evaluation of linear scars by the Patient and Observer Scar Assessment Scale. Plast Reconstr Surg. 2005;116:514–522. doi: 10.1097/01.prs.0000172982.43599.d6.
    1. Truong PT, Lee JC, Soer B, Gaul CA, Olivotto IA. Reliability and validity testing of the .Patient and Observer Scar Assessment Scale in evaluating linear scars after breast cancer surgery. Plast Reconstr Surg. 2007;119:487–494. doi: 10.1097/01.prs.0000252949.77525.bc.
    1. Jelonet PLUS, pansements vaseliné – AVIS DE LA CNEDiMTS 28 mai 2013. Haute Autorité en Santé; 2013. URL:
    1. ICMJE | Recommendations | Defining the Role of Authors and Contributors. Available from: . Accessed on 28 Sept 2018

Source: PubMed

3
Tilaa