Predictive value of soluble urokinase-type plasminogen activator receptor for mortality in patients with suspected myocardial infarction

Nils A Sörensen, Julius Nikorowitsch, Johannes T Neumann, Nicole Rübsamen, Alina Goßling, Tau S Hartikainen, Stefan Blankenberg, Dirk Westermann, Tanja Zeller, Mahir Karakas, Nils A Sörensen, Julius Nikorowitsch, Johannes T Neumann, Nicole Rübsamen, Alina Goßling, Tau S Hartikainen, Stefan Blankenberg, Dirk Westermann, Tanja Zeller, Mahir Karakas

Abstract

Background: Early risk stratification of patients with suspected acute myocardial infarction (AMI) constitutes an unmet need in current daily clinical practice. We aimed to evaluate the predictive value of soluble urokinase-type plasminogen activator receptor (suPAR) levels for 1-year mortality in patients with suspected AMI.

Methods and results: suPAR levels were determined in 1314 patients presenting to the emergency department with suspected AMI. Patients were followed up for 12 months to assess all-cause mortality. Of 1314 patients included, 308 were diagnosed with AMI. Median suPAR levels did not differ between subjects with AMI compared to non-AMI (3.5 ng/ml vs. 3.2 ng/ml, p = 0.066). suPAR levels reliably predicted all-cause mortality after 1 year. Hazard ratio for 1-year mortality was 12.6 (p < 0.001) in the quartile with the highest suPAR levels compared to the first quartile. The prognostic value for 6-month mortality was comparable to an established risk prediction model, the Global Registry of Acute Coronary Events (GRACE) score, with an AUC of 0.79 (95% CI 0.72-0.86) for the GRACE score and 0.77 (95% CI 0.69-0.84) for suPAR. Addition of suPAR improved the GRACE score, as shown by integrated discrimination improvement statistics of 0.036 (p = 0.03) suggesting a further discrimination of events from non-events by the addition of suPAR.

Conclusions: suPAR levels reliably predicted mortality in patients with suspected AMI.

Study registration: http://www.clinicaltrials.gov (NCT02355457).

Keywords: ACS; Mortality; Risk prediction; Soluble urokinase-type plasminogen activator receptor (suPAR).

Conflict of interest statement

Dr. Neumann received honoraria from Siemens and Abbott Diagnostics. Dr. Blankenberg received honoraria from Abbott Diagnostics, Siemens, Thermo Fisher, and Roche Diagnostics and is a consultant for Thermo Fisher. Dr. Westermann reports personal fees from Bayer, Boehringer-Ingelheim, Berlin Chemie, AstraZeneca, Biotronik and Novartis. Dr. Karakas received consultancy fees outside of the scope of this manuscript from Vifor Pharma, Amgen, Sanofi, and AstraZeneca, and furthermore Grant support from Vifor Pharma.

Figures

Fig. 1
Fig. 1
Kaplan–Meier survival analysis. Kaplan–Meier survival curves for all patients (a) and patients diagnosed as having AMI (b) stratified by quartiles of suPAR levels. AMI acute myocardial infarction, suPAR soluble urokinase plasminogen activator receptor
Fig. 2
Fig. 2
Comparison of the predictive value of suPAR and the GRACE score. ROC analyses for the prediction of 6-month mortality for GRACE score and suPAR in all patients (a) and only AMI patients (b). GRACE Global Registry of Acute Coronary Events, suPAR soluble urokinase plasminogen activator receptor

References

    1. Westermann D, Neumann JT, Sörensen NA, Blankenberg S. High-sensitivity assays for troponin in patients with cardiac disease. Nat Rev Cardiol. 2017;14:472–483. doi: 10.1038/nrcardio.2017.48.
    1. Haaf P, Reichlin T, Twerenbold R, et al. Risk stratification in patients with acute chest pain using three high-sensitivity cardiac troponin assays. Eur Heart J. 2014;35:365–375. doi: 10.1093/eurheartj/eht218.
    1. Bueno H, Rossello X, Pocock S, et al. Regional variations in hospital management and post-discharge mortality in patients with non-ST-segment elevation acute coronary syndrome. Clin Res Cardiol. 2018;107:836–844. doi: 10.1007/s00392-018-1254-y.
    1. Hayek SS, Sever S, Ko Y-A, et al. Soluble urokinase receptor and chronic kidney disease. N Engl J Med. 2015;373:1916–1925. doi: 10.1056/NEJMoa1506362.
    1. Hayek SS, Koh KH, Grams ME, et al. A tripartite complex of suPAR, APOL1 risk variants and αvβ3 integrin on podocytes mediates chronic kidney disease. Nat Med. 2017;23:945–953. doi: 10.1038/nm.4362.
    1. Huai Q, Mazar AP, Kuo A, et al. Structure of human urokinase plasminogen activator in complex with its receptor. Science. 2006;311:656–659. doi: 10.1126/science.1121143.
    1. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–1695. doi: 10.1056/NEJMra043430.
    1. Waldeyer C, Karakas M, Scheurle C, et al. The predictive value of different equations for estimation of glomerular filtration rate in patients with coronary artery disease—results from the AtheroGene study. Int J Cardiol. 2016;221:908–913. doi: 10.1016/j.ijcard.2016.07.067.
    1. Lyngbæk S, Andersson C, Marott JL, et al. Soluble urokinase plasminogen activator receptor for risk prediction in patients admitted with acute chest pain. Clin Chem. 2013;59:1621–1629. doi: 10.1373/clinchem.2013.203778.
    1. Leite L, Baptista R, Leitão J, et al. Chest pain in the emergency department: risk stratification with Manchester triage system and HEART score. BMC Cardiovasc Disord. 2015;15(1):48. doi: 10.1186/s12872-015-0049-6.
    1. Eagle KA, Lim MJ, Dabbous OH. A validated prediction model for all forms of acute coronary syndrome: estimating the risk of 6-Aug postdischarge death in an international registry. ACC Curr J Rev. 2004;13:9. doi: 10.1016/j.accreview.2004.07.119.
    1. Ramsay G, Podogrodzka M, McClure C, Fox KAA. Risk prediction in patients presenting with suspected cardiac pain: the GRACE and TIMI risk scores versus clinical evaluation. QJM. 2006;100:11–18. doi: 10.1093/qjmed/hcl133.
    1. Neumann JT, Sörensen NA, Schwemer T, et al. Diagnosis of myocardial infarction using a high-sensitivity troponin I 1-hour algorithm. JAMA Cardiol. 2016;1:397–404. doi: 10.1001/jamacardio.2016.0695.
    1. Hamm CW, Bassand J-P, Agewall S, et al. ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC) Eur Heart J. 2011;32:2999–3054. doi: 10.1093/eurheartj/ehr236.
    1. Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. Eur Heart J. 2012;33:2551–2567. doi: 10.1093/eurheartj/ehs184.
    1. World Medical Association World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–2194. doi: 10.1001/jama.2013.281053.
    1. Schemper M, Smith TL. A note on quantifying follow-up in studies of failure time. Control Clin Trials. 1996;17:343–346. doi: 10.1016/0197-2456(96)00075-X.
    1. Chapman AR, Lee KK, McAllister DA, et al. Association of high-sensitivity cardiac troponin I concentration with cardiac outcomes in patients with suspected acute coronary syndrome. JAMA. 2017;318:1913–1924. doi: 10.1001/jama.2017.17488.
    1. Persson M, Östling G, Smith G, et al. Soluble urokinase plasminogen activator receptor: a risk factor for carotid plaque, stroke, and coronary artery disease. Stroke. 2014;45:18–23. doi: 10.1161/STROKEAHA.113.003305.
    1. Eapen DJ, Manocha P, Ghasemzadeh N, et al. Soluble urokinase plasminogen activator receptor level is an independent predictor of the presence and severity of coronary artery disease and of future adverse events. J Am Heart Assoc. 2014;3:e001118–e001118. doi: 10.1161/JAHA.114.001118.
    1. Lyngbæk S, Marott JL, Sehestedt T, et al. Cardiovascular risk prediction in the general population with use of suPAR, CRP, and Framingham Risk Score. Int J Cardiol. 2013;167:2904–2911. doi: 10.1016/j.ijcard.2012.07.018.
    1. Roffi M, Patrono C, Collet J-P, et al. 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC) Eur Heart J. 2016;37:267–315. doi: 10.1093/eurheartj/ehv320.
    1. Sörensen NA, Dönmez G, Neumann JT, et al. Diagnostic value of soluble urokinase-type plasminogen activator receptor in addition to high-sensitivity troponin I in early diagnosis of acute myocardial infarction. Biomolecules. 2019;9:108. doi: 10.3390/biom9030108.
    1. Neumann JT, Sörensen NA, Rübsamen N, et al. Discrimination of patients with type 2 myocardial infarction. Eur Heart J. 2017;38:3514–3520. doi: 10.1093/eurheartj/ehx457.
    1. Vargas KG, Haller PM, Jäger B, et al. Variations on classification of main types of myocardial infarction: a systematic review and outcome meta-analysis. Clin Res Cardiol. 2018;60:1581. doi: 10.1007/s00392-018-1403-3.
    1. Backus BE, Six AJ, Kelder JC, et al. A prospective validation of the HEART score for chest pain patients at the emergency department. Int J Cardiol. 2013;168:2153–2158. doi: 10.1016/j.ijcard.2013.01.255.
    1. Thunø M, Macho B, Eugen-Olsen J. suPAR: the molecular crystal ball. Dis Markers. 2009;27:157–172. doi: 10.3233/DMA-2009-0657.
    1. Edsfeldt A, Nitulescu M, Grufman H, et al. Soluble urokinase plasminogen activator receptor is associated with inflammation in the vulnerable human atherosclerotic plaque. Stroke. 2012;43:3305–3312. doi: 10.1161/STROKEAHA.112.664094.
    1. Pliyev BK. Activated human neutrophils rapidly release the chemotactically active D2D3 form of the urokinase-type plasminogen activator receptor (uPAR/CD87) Mol Cell Biochem. 2008;321:111–122. doi: 10.1007/s11010-008-9925-z.
    1. Schnabel RB, Yin X, Larson MG, et al. Multiple inflammatory biomarkers in relation to cardiovascular events and mortality in the community. Arterioscler Thromb Vasc Biol. 2013;33:1728–1733. doi: 10.1161/ATVBAHA.112.301174.
    1. Emerging Risk Factors Collaboration. Kaptoge S, Di Angelantonio E, et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375:132–140. doi: 10.1016/S0140-6736(09)61717-7.
    1. Ho JE, Mahajan A, Chen M-H, et al. Clinical and genetic correlates of growth differentiation factor 15 in the community. Clin Chem. 2012;58:1582–1591. doi: 10.1373/clinchem.2012.190322.
    1. Damman P, Kempf T, Windhausen F, et al. Growth-differentiation factor 15 for long-term prognostication in patients with non-ST-elevation acute coronary syndrome: an Invasive versus Conservative Treatment in Unstable Coronary Syndromes (ICTUS) substudy. Int J Cardiol. 2014;172:356–363. doi: 10.1016/j.ijcard.2014.01.025.

Source: PubMed

3
Tilaa