Artemether-lumefantrine co-administration with antiretrovirals: population pharmacokinetics and dosing implications

Richard M Hoglund, Pauline Byakika-Kibwika, Mohammed Lamorde, Concepta Merry, Michael Ashton, Warunee Hanpithakpong, Nicholas P J Day, Nicholas J White, Angela Äbelö, Joel Tarning, Richard M Hoglund, Pauline Byakika-Kibwika, Mohammed Lamorde, Concepta Merry, Michael Ashton, Warunee Hanpithakpong, Nicholas P J Day, Nicholas J White, Angela Äbelö, Joel Tarning

Abstract

Aim: Drug-drug interactions between antimalarial and antiretroviral drugs may influence antimalarial treatment outcomes. The aim of this study was to investigate the potential drug-drug interactions between the antimalarial drugs, lumefantrine, artemether and their respective metabolites desbutyl-lumefantrine and dihydroartemisinin, and the HIV drugs efavirenz, nevirapine and lopinavir/ritonavir.

Method: Data from two clinical studies, investigating the influence of the HIV drugs efavirenz, nevirapine and lopinavir/ritonavir on the pharmacokinetics of the antimalarial drugs lumefantrine, artemether and their respective metabolites, in HIV infected patients were pooled and analyzed using a non-linear mixed effects modelling approach.

Results: Efavirenz and nevirapine significantly decreased the terminal exposure to lumefantrine (decrease of 69.9% and 25.2%, respectively) while lopinavir/ritonavir substantially increased the exposure (increase of 439%). All antiretroviral drugs decreased the total exposure to dihydroartemisinin (decrease of 71.7%, 41.3% and 59.7% for efavirenz, nevirapine and ritonavir/lopinavir, respectively). Simulations suggest that a substantially increased artemether-lumefantrine dose is required to achieve equivalent exposures when co-administered with efavirenz (250% increase) and nevirapine (75% increase). When co-administered with lopinavir/ritonavir it is unclear if the increased lumefantrine exposure compensates adequately for the reduced dihydroartemisinin exposure and thus whether dose adjustment is required.

Conclusion: There are substantial drug interactions between artemether-lumefantrine and efavirenz, nevirapine and ritonavir/lopinavir. Given the readily saturable absorption of lumefantrine, the dose adjustments predicted to be necessary will need to be evaluated prospectively in malaria-HIV co-infected patients.

Trial registration: ClinicalTrials.gov NCT00619944 NCT00620438.

Keywords: artemether-lumefantrine; drug-drug interaction; efavirenz; lopinavir/ritonavir; nevirapine; population pharmacokinetics.

© 2014 The Authors. British Journal of Clinical Pharmacology published by. John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

Figures

Figure 1
Figure 1
Basic goodness-of-fit plots for the final lumefantrine/desbutyl-lumefantrine model. Observations plotted against individual predicted concentrations of lumefantrine (A) and desbutyl-lumefantrine (C). Conditional weighted residuals of lumefantrine (B) and desbutyl-lumefantrine (D) plotted against time after dose. The solid line is the identity line and the broken line is the locally weighted least square regression line. The concentrations are presented on a logarithmic (base 10) axis
Figure 2
Figure 2
Visual predictive checks of the final models for lumefantrine (A), desbutyl-lumefantrine (B), artemether (C), and dihydroartemisinin (D), based on 2000 simulations. Open circles represent the observations and solid lines represent the 5th, 50th and 95th percentiles of the observed data. The shaded areas represent the 95% confidence intervals around the simulated 5th, 50th and 95th percentiles. The concentrations are presented on a logarithmic (base 10) axis
Figure 3
Figure 3
Basic goodness-of-fit plots for the artemether/dihydroartemisinin model. Observations plotted against individual predicted concentrations of artemether (A) and dihydroartemisinin (C). Conditional weighted residuals of artemether (B) and dihydroartemisinin (D) plotted against time after dose. The solid line is the identity line and the broken line is the locally weighted least square regression line. The concentrations are presented on a logarithmic (base 10) axis
Figure 4
Figure 4
Box (25th to 75th percentile) and whisker (1.5 × interquartile range) plot of dose simulations. The top row illustrates the simulated terminal exposures (AUC) from 72 to 894 h for lumefantrine when given alone, in combination with HIV treatment and after an adjusted dose regimen [efavirenz (A), nevirapine (B) and lopinavir/ritonavir (C)]. The middle row illustrates the simulated exposures (AUC) from 0 to 894 h for dihydroartemisinin when given alone, in combination with HIV treatment and after an adjusted dose regimen [efavirenz (D), nevirapine (E) or lopinavir/ritonavir (F)]. The bottom row illustrates the simulated day 7 concentrations for lumefantrine when given alone, in combination with HIV treatment and after an adjusted dose regimen [efavirenz (G), nevirapine (H) or lopinavir/ritonavir (I)]. The dotted lines in the top and middle rows represent the standard exposures when the antimalarial treatment is given alone. The dotted lines in the bottom row represent previously defined day 7 cut-off concentration for therapeutic failure of 280 ng ml−1 and 175 ng ml−1

References

    1. WHO. World Malaria Report: 2013. Geneva, Switzerland: WHO; 2013.
    1. WHO. Progress Report 2011: Global HIV/AIDS Response. Geneva, Switzerland: WHO; 2011.
    1. French N, Nakiyingi J, Lugada E, Watera C, Whitworth JA, Gilks CF. Increasing rates of malarial fever with deteriorating immune status in HIV-1-infected Ugandan adults. AIDS. 2001;15:899–906.
    1. Whitworth J, Morgan D, Quigley M, Smith A, Mayanja B, Eotu H, Omoding N, Okongo M, Malamba S, Ojwiya A. Effect of HIV-1 and increasing immunosuppression on malaria parasitaemia and clinical episodes in adults in rural Uganda: a cohort study. Lancet. 2000;356:1051–1056.
    1. Ali S, Najmi MH, Tarning J, Lindegardh N. Pharmacokinetics of artemether and dihydroartemisinin in healthy Pakistani male volunteers treated with artemether-lumefantrine. Malar J. 2010;9:275.
    1. Lefèvre G, Bindschedler M, Ezzet F, Schaeffer N, Meyer I, Thomsen MS. Pharmacokinetic interaction trial between co-artemether and mefloquine. Eur J Pharm Sci. 2000;10:141–151.
    1. Van Agtmael MA, Gupta V, van der Graaf CA, van Boxtel CJ. The effect of grapefruit juice on the time-dependent decline of artemether plasma levels in healthy subjects. Clin Pharmacol Ther. 1999;66:408–414.
    1. Tarning J, Kloprogge F, Piola P, Dhorda M, Muwanga S, Turyakira E, Nuengchamnong N, Nosten F, Day NPJ, White NJ, Guerin PJ, Lindegardh N. Population pharmacokinetics of Artemether and dihydroartemisinin in pregnant women with uncomplicated Plasmodium falciparum malaria in Uganda. Malar J. 2012;11:293.
    1. Navaratnam V, Mansor SM, Sit NW, Grace J, Li Q, Olliaro P. Pharmacokinetics of artemisinin-type compounds. Clin Pharmacokinet. 2000;39:255–270.
    1. Kokwaro G, Mwai L, Nzila A. Artemether/lumefantrine in the treatment of uncomplicated falciparum malaria. Expert Opin Pharmacother. 2007;8:75–94.
    1. Ilett KF, Ethell BT, Maggs JL, Davis TME, Batty KT, Burchell B, Binh TQ, Thu LTA, Hung NC, Pirmohamed M, Park BK, Edwards G. Glucuronidation of dihydroartemisinin in vivo and by human liver microsomes and expressed UDP-glucuronosyltransferases. Drug Metab Dispos. 2002;30:1005–1012.
    1. Van Agtmael MA, Cheng-Qi S, Qing JX, Mull R, van Boxtel CJ. Multiple dose pharmacokinetics of artemether in Chinese patients with uncomplicated falciparum malaria. Int J Antimicrob Agents. 1999;12:151–158.
    1. Ashley EA, Stepniewska K, Lindegårdh N, McGready R, Annerberg A, Hutagalung R, Singtoroj T, Hla G, Brockman A, Proux S, Wilahphaingern J, Singhasivanon P, White NJ, Nosten F. Pharmacokinetic study of artemether-lumefantrine given once daily for the treatment of uncomplicated multidrug-resistant falciparum malaria. Trop Med Int Health. 2007;12:201–208.
    1. Tarning J, Kloprogge F, Dhorda M, Jullien V, Nosten F, White NJ, Guerin PJ, Piola P. Pharmacokinetic properties of artemether, dihydroartemisinin, lumefantrine, and quinine in pregnant women with uncomplicated Plasmodium falciparum malaria in Uganda. Antimicrob Agents Chemother. 2013;57:5096–5103.
    1. Lefèvre G, Carpenter P, Souppart C, Schmidli H, McClean M, Stypinski D. Pharmacokinetics and electrocardiographic pharmacodynamics of artemether-lumefantrine (Riamet) with concomitant administration of ketoconazole in healthy subjects. Br J Clin Pharmacol. 2002;54:485–492.
    1. Wong RPM, Salman S, Ilett KF, Siba PM, Mueller I, Davis TME. Desbutyl-lumefantrine is a metabolite of lumefantrine with potent in vitro antimalarial activity that may influence artemether-lumefantrine treatment outcome. Antimicrob Agents Chemother. 2011;55:1194–1198.
    1. Hatz C, Soto J, Nothdurft HD, Zoller T, Weitzel T, Loutan L, Bricaire F, Gay F, Burchard G-D, Andriano K, Lefèvre G, De Palacios PI, Genton B. Treatment of acute uncomplicated falciparum malaria with artemether-lumefantrine in nonimmune populations: a safety, efficacy, and pharmacokinetic study. Am J Trop Med Hyg. 2008;78:241–247.
    1. Salman S, Page-Sharp M, Griffin S, Kose K, Siba PM, Ilett KF, Mueller I, Davis TME. Population pharmacokinetics of artemether, lumefantrine, and their respective metabolites in Papua New Guinean children with uncomplicated malaria. Antimicrob Agents Chemother. 2011;55:5306–5313.
    1. Fellay J, Marzolini C, Decosterd L, Golay KP, Baumann P, Buclin T, Telenti A, Eap CB. Variations of CYP3A activity induced by antiretroviral treatment in HIV-1 infected patients. Eur J Clin Pharmacol. 2005;60:865–873.
    1. Lamson M, MacGregor T, Riska P, Erickson D, Maxfield P, Rowland L, Gigliotti M, Robinson P, Azzam S, Keirns J. Nevirapine induces both CYP3A4 and CYP2B6 metabolic pathways. Clin Pharmacol Ther. 1999;65:137.
    1. Robertson SM, Maldarelli F, Natarajan V, Formentini E, Alfaro RM, Penzak SR. Efavirenz induces CYP2B6-mediated hydroxylation of bupropion in healthy subjects. J Acquir Immune Defic Syndr. 2008;49:513–519.
    1. Almond LM, Edirisinghe D, Dalton M, Bonington A, Back DJ, Khoo SH. Intracellular and plasma pharmacokinetics of nevirapine in human immunodeficiency virus-infected individuals. Clin Pharmacol Ther. 2005;78:132–142.
    1. Burhenne J, Matthée A-K, Pasáková I, Röder C, Heinrich T, Haefeli WE, Mikus G, Weiss J. No evidence for induction of ABC transporters in peripheral blood mononuclear cells in humans after 14 days of efavirenz treatment. Antimicrob Agents Chemother. 2010;54:4185–4191.
    1. Chandler B, Almond L, Ford J, Owen A, Hoggard P, Khoo S, Back D. The effects of protease inhibitors and nonnucleoside reverse transcriptase inhibitors on P-glycoprotein expression in peripheral blood mononuclear cells in vitro. J Acquir Immune Defic Syndr. 2003;33:551–556.
    1. Oswald S, Meyer zu Schwabedissen HE, Nassif A, Modess C, Desta Z, Ogburn ET, Mostertz J, Keiser M, Jia J, Hubeny A, Ulrich A, Runge D, Marinova M, Lütjohann D, Kroemer HK, Siegmund W. Impact of efavirenz on intestinal metabolism and transport: insights from an interaction study with ezetimibe in healthy volunteers. Clin Pharmacol Ther. 2012;91:506–513.
    1. Störmer E, von Moltke LL, Perloff MD, Greenblatt DJ. Differential modulation of P-glycoprotein expression and activity by non-nucleoside HIV-1 reverse transcriptase inhibitors in cell culture. Pharm Res. 2002;19:1038–1045.
    1. Yeh RF, Gaver VE, Patterson KB, Rezk NL, Baxter-Meheux F, Blake MJ, Eron JJ, Klein CE, Rublein JC, Kashuba ADM. Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers. J Acquir Immune Defic Syndr. 2006;42:52–60.
    1. Zhang D, Chando TJ, Everett DW, Patten CJ, Dehal SS, Humphreys WG. In vitro inhibition of UDP glucuronosyltransferases by atazanavir and other HIV protease inhibitors and the relationship of this property to in vivo bilirubin glucuronidation. Drug Metab Dispos. 2005;33:1729–1739.
    1. Porter KA, Cole SR, Eron JJ, Zheng Y, Hughes MD, Lockman S, Poole C, Skinner-Adams TS, Hosseinipour M, Shaffer D, D'Amico R, Sawe FK, Siika A, Stringer E, Currier JS, Chipato T, Salata R, McCarthy JS, Meshnick SR. HIV-1 protease inhibitors and clinical malaria: a secondary analysis of the AIDS Clinical Trials Group A5208 study. Antimicrob Agents Chemother. 2012;56:995–1000.
    1. Parikh S, Gut J, Istvan E, Goldberg DE, Havlir DV, Rosenthal PJ. Antimalarial activity of human immunodeficiency virus type 1 protease inhibitors. Antimicrob Agents Chemother. 2005;49:2983–2985.
    1. Achan J, Kakuru A, Ikilezi G, Ruel T, Clark TD, Nsanzabana C, Charlebois E, Aweeka F, Dorsey G, Rosenthal PJ, Havlir D, Kamya MR. Antiretroviral agents and prevention of malaria in HIV-infected Ugandan children. N Engl J Med. 2012;367:2110–2118.
    1. German P, Parikh S, Lawrence J, Dorsey G, Rosenthal PJ, Havlir D, Charlebois E, Hanpithakpong W, Lindegardh N, Aweeka FT. Lopinavir/ritonavir affects pharmacokinetic exposure of artemether/lumefantrine in HIV-uninfected healthy volunteers. J Acquir Immune Defic Syndr. 2009;51:424–429.
    1. Kredo T, Mauff K, Van der Walt JS, Wiesner L, Maartens G, Cohen K, Smith P, Barnes KI. Interaction between artemether-lumefantrine and nevirapine-based antiretroviral therapy in HIV-1-infected patients. Antimicrob Agents Chemother. 2011;55:5616–5623.
    1. Huang L, Parikh S, Rosenthal PJ, Lizak P, Marzan F, Dorsey G, Havlir D, Aweeka FT. Concomitant efavirenz reduces pharmacokinetic exposure to the antimalarial drug artemether-lumefantrine in healthy volunteers. J Acquir Immune Defic Syndr. 2012;61:310–316.
    1. Byakika-Kibwika P, Lamorde M, Okaba-Kayom V, Mayanja-Kizza H, Katabira E, Hanpithakpong W, Pakker N, Dorlo TPC, Tarning J, Lindegardh N, de Vries PJ, Back D, Khoo S, Merry C. Lopinavir/ritonavir significantly influences pharmacokinetic exposure of artemether/lumefantrine in HIV-infected Ugandan adults. J Antimicrob Chemother. 2012;67:1217–1223.
    1. Byakika-Kibwika P, Lamorde M, Mayito J, Nabukeera L, Namakula R, Mayanja-Kizza H, Katabira E, Ntale M, Pakker N, Ryan M, Hanpithakpong W, Tarning J, Lindegardh N, de Vries PJ, Khoo S, Back D, Merry C. Significant pharmacokinetic interactions between artemether/lumefantrine and efavirenz or nevirapine in HIV-infected Ugandan adults. J Antimicrob Chemother. 2012;67:2213–2221.
    1. Annerberg A, Singtoroj T, Tipmanee P, White NJ, Day NPJ, Lindegårdh N. High throughput assay for the determination of lumefantrine in plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;822:330–333.
    1. Hanpithakpong W, Kamanikom B, Dondorp AM, Singhasivanon P, White NJ, Day NPJ, Lindegardh N. A liquid chromatographic-tandem mass spectrometric method for determination of artesunate and its metabolite dihydroartemisinin in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;876:61–68.
    1. Blessborn D, Römsing S, Annerberg A, Sundquist D, Björkman A, Lindegardh N, Bergqvist Y. Development and validation of an automated solid-phase extraction and liquid chromatographic method for determination of lumefantrine in capillary blood on sampling paper. J Pharm Biomed Anal. 2007;45:282–287.
    1. Food and Drug Administration. 2001. Guidance for Industry: Bioanalytical Method Validation.
    1. Beal SL, Sheiner LB. Estimating population kinetics. Crit Rev Biomed Eng. 1982;8:195–222. 1982/01/01 ed.
    1. Keizer RJ, van Benten M, Beijnen JH, Schellens JHM, Huitema ADR. Piraña and PCluster: a modeling environment and cluster infrastructure for NONMEM. Comput Methods Programs Biomed. 2011;101:72–79.
    1. Jonsson EN, Karlsson MO. Xpose–an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed. 1999;58:51–64. 1999/04/09 ed.
    1. Lindbom L, Pihlgren P, Jonsson EN. PsN-Toolkit–a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79:241–257. 2005/07/19 ed.
    1. Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28:481–504.
    1. Savic RM, Jonker DM, Kerbusch T, Karlsson MO. Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn. 2007;34:711–726. 2007/07/27 ed.
    1. Yang J, Liao M, Shou M, Jamei M, Yeo KR, Tucker GT, Rostami-Hodjegan A. Cytochrome P450 turnover: regulation of synthesis and degradation, methods for determining rates, and implications for the prediction of drug interactions. Curr Drug Metab. 2008;9:384–394.
    1. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13:143–151.
    1. Tarning J, McGready R, Lindegardh N, Ashley EA, Pimanpanarak M, Kamanikom B, Annerberg A, Day NP, Stepniewska K, Singhasivanon P, White NJ, Nosten F. Population pharmacokinetics of lumefantrine in pregnant women treated with artemether-lumefantrine for uncomplicated Plasmodium falciparum malaria. Antimicrob Agents Chemother. (01 edn) 2009;53:3837–3846.
    1. Kloprogge F, Piola P, Dhorda M, Muwanga S, Turyakira E, Apinan S, Lindegårdh N, Nosten F, Day NPJ, White NJ, Guerin PJ, Tarning J. Population pharmacokinetics of lumefantrine in pregnant and nonpregnant women with uncomplicated Plasmodium falciparum malaria in Uganda. CPT Pharmacometrics Syst Pharmacol. 2013;2:e83.
    1. Ezzet F, Mull R, Karbwang J. Population pharmacokinetics and therapeutic response of CGP 56697 (artemether + benflumetol) in malaria patients. Br J Clin Pharmacol. 1998;46:553–561.
    1. Mordi MN, Mansor SM, Navaratnam V, Wernsdorfer WH. Single dose pharmacokinetics of oral artemether in healthy Malaysian volunteers. Br J Clin Pharmacol. 1997;43:363–365.
    1. Price RN, Uhlemann A-C, van Vugt M, Brockman A, Hutagalung R, Nair S, Nash D, Singhasivanon P, Anderson TJC, Krishna S, White NJ, Nosten F. Molecular and pharmacological determinants of the therapeutic response to artemether-lumefantrine in multidrug-resistant Plasmodium falciparum malaria. Clin Infect Dis. 2006;42:1570–1577.

Source: PubMed

3
Tilaa