The importance of albumin infusion rate for plasma volume expansion following major abdominal surgery - AIR: study protocol for a randomised controlled trial

Svajunas Statkevicius, Johan Bonnevier, Björn P Bark, Erik Larsson, Carl M Öberg, Päivi Kannisto, Bobby Tingstedt, Peter Bentzer, Svajunas Statkevicius, Johan Bonnevier, Björn P Bark, Erik Larsson, Carl M Öberg, Päivi Kannisto, Bobby Tingstedt, Peter Bentzer

Abstract

Background: Administration of fluids to restore normovolaemia is one of the most common therapeutic interventions performed peri-operatively and in the critically ill, but no study has evaluated the importance of infusion rate for the plasma volume-expanding effect of a resuscitation fluid. The present study is designed to test the hypothesis that a slow infusion of resuscitation fluid results in better plasma volume expansion than a rapid infusion.

Methods/design: The study is a single-centre, assessor-blinded, parallel-group, randomised prospective study. Patients over 40 years of age admitted to the post-operative care unit after a Whipple procedure or major gynaecological surgery and presenting with signs of hypovolaemia are eligible for inclusion. Patients are randomised in a 1:1 fashion with no stratification to either rapid (30 minutes) or slow (180 minutes) infusion of 5% albumin at a dose of 10 ml/kg ideal body weight. Plasma volume is measured using 125I human serum albumin at baseline (prior to albumin infusion) as well as at 30 minutes and 180 minutes after infusion start. The primary endpoint is change in plasma volume from baseline to 180 minutes after the start of 5% albumin infusion. Secondary endpoints include the integral of plasma volume over time from baseline to 180 minutes after the start of the infusion and transcapillary escape rate of albumin (%/h) from 180 minutes to 240 minutes after the start of albumin infusion. In addition, diuresis, change in central venous oxygen saturation, lactate and blood pressure will be evaluated. A total of 70 patients will be included in the study, and the study has 80% power to detect a difference of 4 ml/kg in plasma volume expansion between the two groups.

Discussion: The present study is the first clinical investigation of the importance of infusion rate for the plasma volume-expanding effect of a resuscitation fluid.

Trial registration: EudraCT identifier: 2013-004446-42 . Registration date: 20 December 2013. ClinicalTrials.gov identifier: NCT02728921 . Registration date: 31 March 2016.

Keywords: Albumin; Infusion rate; Permeability; Plasma volume expansion; Transcapillary escape rate.

Figures

Fig. 1
Fig. 1
Detailed enrolment and randomisation flowchart for Albumin Infusion Rate (AIR) study. PACU Post-anaesthesia care unit, ScvO2 Central venous oxygen saturation, MAP Mean arterial pressure
Fig. 2
Fig. 2
Detailed experimental protocol. PV1 Baseline plasma volume, PV2 Plasma volume after 30 minutes, PV3 Plasma volume after 180 minutes, Hct Haematocrit, ScvO2 Central venous oxygen saturation, BP Blood pressure, CVP Central venous pressure, HD Hourly diuresis, TER Transcapillary escape rate

References

    1. Brandstrup B, Tonnesen H, Beier-Holgersen R, Hjortso E, Ording H, Lindorff-Larsen K, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003;238(5):641–8. doi: 10.1097/01.sla.0000094387.50865.23.
    1. Rahbari NN, Zimmermann JB, Schmidt T, Koch M, Weigand MA, Weitz J. Meta-analysis of standard, restrictive and supplemental fluid administration in colorectal surgery. Br J Surg. 2009;96(4):331–41. doi: 10.1002/bjs.6552.
    1. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65. doi: 10.1097/CCM.0b013e3181feeb15.
    1. Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL, et al. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12(3):R74. doi: 10.1186/cc6916.
    1. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75. doi: 10.1056/NEJMoa062200.
    1. Mitchell JP, Schuller D, Calandrino FS, Schuster DP. Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis. 1992;145(5):990–8. doi: 10.1164/ajrccm/145.5.990.
    1. Rippe B, Haraldsson B. Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev. 1994;74(1):163–219.
    1. Huxley VH, Tucker VL, Verburg KM, Freeman RH. Increased capillary hydraulic conductivity induced by atrial natriuretic peptide. Circ Res. 1987;60(2):304–7. doi: 10.1161/01.RES.60.2.304.
    1. Chappell D, Bruegger D, Potzel J, Jacob M, Brettner F, Vogeser M, et al. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care. 2014;18(5):538. doi: 10.1186/s13054-014-0538-5.
    1. Bark BP, Persson J, Grande PO. Importance of the infusion rate for the plasma expanding effect of 5% albumin, 6% HES 130/0.4, 4% gelatin, and 0.9% NaCl in the septic rat. Crit Care Med. 2013;41(3):857–66. doi: 10.1097/CCM.0b013e318274157e.
    1. Bark BP, Grande PO. Infusion rate and plasma volume expansion of dextran and albumin in the septic guinea pig. Acta Anaesthesiol Scand. 2014;58(1):44–51. doi: 10.1111/aas.12228.
    1. Finfer S, Liu B, Taylor C, Bellomo R, Billot L, Cook D, et al. Resuscitation fluid use in critically ill adults: an international cross-sectional study in 391 intensive care units. Crit Care. 2010;14(5):R185. doi: 10.1186/cc9293.
    1. Maitland K, Kiguli S, Opoka RO, Engoru C, Olupot-Olupot P, Akech SO, et al. Mortality after fluid bolus in African children with severe infection. N Engl J Med. 2011;364(26):2483–95. doi: 10.1056/NEJMoa1101549.
    1. Preau S, Saulnier F, Dewavrin F, Durocher A, Chagnon JL. Passive leg raising is predictive of fluid responsiveness in spontaneously breathing patients with severe sepsis or acute pancreatitis. Crit Care Med. 2010;38(3):819–25. doi: 10.1097/CCM.0b013e3181c8fe7a.
    1. Barbier C, Loubieres Y, Schmit C, Hayon J, Ricome JL, Jardin F, et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30(9):1740–6.
    1. Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30(9):1834–7. doi: 10.1007/s00134-004-2233-5.
    1. Wurtz R, Itokazu G, Rodvold K. Antimicrobial dosing in obese patients. Clin Infect Dis. 1997;25(1):112–8. doi: 10.1086/514505.
    1. Stéphan F, Flahault A, Dieudonné N, Hollande J, Paillard F, Bonnet F. Clinical evaluation of circulating blood volume in critically ill patients—contribution of a clinical scoring system. Br J Anaesth. 2001;86(6):754–62. doi: 10.1093/bja/86.6.754.
    1. Bentzer P, Thomas OD, Westborg J, Johansson PI, Schott U. The volume-expanding effects of autologous liquid stored plasma following hemorrhage. Scand J Clin Lab Invest. 2012;72(6):490–4. doi: 10.3109/00365513.2012.699099.
    1. Pritchard WH, Moir TW, MacIntyre WJ. Measurement of the early disappearance of iodinated (I131) serum albumin from circulating blood by a continuous recording method. Circ Res. 1955;3(1):19–23. doi: 10.1161/01.RES.3.1.19.
    1. Norberg Å, Rooyackers O, Segersvärd R, Wernerman J. Albumin kinetics in patients undergoing major abdominal surgery. PLoS One. 2015;10(8):e0136371. doi: 10.1371/journal.pone.0136371.
    1. Bonfils PK, Damgaard M, Stokholm KH, Nielsen SL. 99mTc-albumin can replace 125I-albumin to determine plasma volume repeatedly. Scand J Clin Lab Invest. 2012;72(6):447–51. doi: 10.3109/00365513.2012.688856.
    1. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56. doi: 10.1056/NEJMoa040232.
    1. International Committee of Medical Journal Editors. Recommendations for the conduct, reporting, editing, and publication of scholarly work in medical journals. Updated December 2015. . Accessed 10 Sep 2016.
    1. O’Dwyer MJ, Owen HC, Torrance HD. The perioperative immune response. Curr Opin Crit Care. 2015;21(4):336–42. doi: 10.1097/MCC.0000000000000213.
    1. Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A, et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;30(9):1734–9. doi: 10.1007/s00134-004-2361-y.
    1. Vincent JL, Weil MH. Fluid challenge revisited. Crit Care Med. 2006;34(5):1333–7. doi: 10.1097/01.CCM.0000214677.76535.A5.
    1. Margarson MP, Soni NC. Effects of albumin supplementation on microvascular permeability in septic patients. J Appl Physiol. 2002;92(5):2139–45. doi: 10.1152/japplphysiol.00201.2001.

Source: PubMed

3
Tilaa