Multimodal measurement approach to identify individuals with mild cognitive impairment: study protocol for a cross-sectional trial

Bernhard Grässler, Fabian Herold, Milos Dordevic, Tariq Ali Gujar, Sabine Darius, Irina Böckelmann, Notger G Müller, Anita Hökelmann, Bernhard Grässler, Fabian Herold, Milos Dordevic, Tariq Ali Gujar, Sabine Darius, Irina Böckelmann, Notger G Müller, Anita Hökelmann

Abstract

Introduction: The diagnosis of mild cognitive impairment (MCI), that is, the transitory phase between normal age-related cognitive decline and dementia, remains a challenging task. It was observed that a multimodal approach (simultaneous analysis of several complementary modalities) can improve the classification accuracy. We will combine three noninvasive measurement modalities: functional near-infrared spectroscopy (fNIRS), electroencephalography and heart rate variability via ECG. Our aim is to explore neurophysiological correlates of cognitive performance and whether our multimodal approach can aid in early identification of individuals with MCI.

Methods and analysis: This study will be a cross-sectional with patients with MCI and healthy controls (HC). The neurophysiological signals will be measured during rest and while performing cognitive tasks: (1) Stroop, (2) N-back and (3) verbal fluency test (VFT). Main aims of statistical analysis are to (1) determine the differences in neurophysiological responses of HC and MCI, (2) investigate relationships between measures of cognitive performance and neurophysiological responses and (3) investigate whether the classification accuracy can be improved by using our multimodal approach. To meet these targets, statistical analysis will include machine learning approaches.This is, to the best of our knowledge, the first study that applies simultaneously these three modalities in MCI and HC. We hypothesise that the multimodal approach improves the classification accuracy between HC and MCI as compared with a unimodal approach. If our hypothesis is verified, this study paves the way for additional research on multimodal approaches for dementia research and fosters the exploration of new biomarkers for an early detection of nonphysiological age-related cognitive decline.

Ethics and dissemination: Ethics approval was obtained from the local Ethics Committee (reference: 83/19). Data will be shared with the scientific community no more than 1 year following completion of study and data assembly.

Trial registration number: ClinicalTrials.gov, NCT04427436, registered on 10 June 2020, https://ichgcp.net/clinical-trials-registry/NCT04427436.

Keywords: cardiology; dementia; mental health; neurophysiology; physiology.

Conflict of interest statement

Competing interests: None declared.

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY. Published by BMJ.

Figures

Figure 1
Figure 1
Description of the Stroop paradigm. C, congruent condition; In, incongruent condition; M, mixed condition; s, seconds.
Figure 2
Figure 2
Description of N-back paradigm. 0, 0-back; 1, 1-back; 2, 2-back; s, seconds.
Figure 3
Figure 3
Description of verbal fluency test paradigm. s, seconds.
Figure 4
Figure 4
Visualization of the positions of the EEG electrodes and fNIRS optodes. IZ, inion; LPA, left preauricular point; NZ, nasion; RPA, right preauricular point.
Figure 5
Figure 5
EEG data processing pipeline. ICA, independent component analysis; Loreta, low-resolution electromagnetic tomography analysis.

References

    1. Alzheimers Dement . 2020 Alzheimer’s disease facts and figures 2020.
    1. WHO . Risk reduction of cognitive decline and dementia: WHO guidelines. Geneva: World Health Organization, 2019.
    1. Dilling H, . Internationale Klassifikation psychischer Störungen: ICD-10 Kapitel V (F); klinisch-diagnostische Leitlinien. 6., vollst. überarb. Aufl. unter Berücksichtigung der Änderungen entsprechend ICD-10-GM 2004/2008. Bern: Huber, 2008.
    1. Leicht H, Heinrich S, Heider D, et al. . Net costs of dementia by disease stage. Acta Psychiatr Scand 2011;124:384–95. 10.1111/j.1600-0447.2011.01741.x
    1. Wallesch C-W, Förstl H, Bartels C. Demenzen. 3, unveränderte Auflage. Stuttgart, New York: Georg Thieme Verlag, 2017.
    1. Wimo A, Guerchet M, Ali G-C, et al. . The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 2017;13:1–7. 10.1016/j.jalz.2016.07.150
    1. Etgen T, Sander D, Bickel H, et al. . Mild cognitive impairment and dementia: the importance of modifiable risk factors. Dtsch Arztebl Int 2011;108:743–50. 10.3238/arztebl.2011.0743
    1. Petersen RC, Smith GE, Waring SC, et al. . Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999;56:303–8. 10.1001/archneur.56.3.303
    1. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004;256:183–94. 10.1111/j.1365-2796.2004.01388.x
    1. Dubois B, Hampel H, Feldman HH, et al. . Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement 2016;12:292–323. 10.1016/j.jalz.2016.02.002
    1. Jongsiriyanyong S, Limpawattana P. Mild cognitive impairment in clinical practice: a review article. Am J Alzheimers Dis Other Demen 2018;33:500–7. 10.1177/1533317518791401
    1. Kivipelto M, Mangialasche F, Ngandu T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol 2018;14:653–66. 10.1038/s41582-018-0070-3
    1. Yiannopoulou KG, Papageorgiou SG. Current and future treatments in Alzheimer disease: an update. J Cent Nerv Syst Dis 2020;12:1179573520907397. 10.1177/1179573520907397
    1. Atri A. The Alzheimer’s disease clinical spectrum: diagnosis and management. Med Clin North Am 2019;103:263–93. 10.1016/j.mcna.2018.10.009
    1. Annavarapu RN, Kathi S, Vadla VK. Non-Invasive imaging modalities to study neurodegenerative diseases of aging brain. J Chem Neuroanat 2019;95:54–69. 10.1016/j.jchemneu.2018.02.006
    1. Pinti P, Tachtsidis I, Hamilton A, et al. . The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann N Y Acad Sci 2020;1464:5–29. 10.1111/nyas.13948
    1. Herold F, Wiegel P, Scholkmann F, et al. . Applications of functional near-infrared spectroscopy (fNIRS) neuroimaging in Exercise–Cognition science: a systematic, Methodology-Focused review. JCM 2018;7:466. 10.3390/jcm7120466
    1. Agbangla NF, Audiffren M, Albinet CT. Use of near-infrared spectroscopy in the investigation of brain activation during cognitive aging: a systematic review of an emerging area of research. Ageing Res Rev 2017;38:52–66. 10.1016/j.arr.2017.07.003
    1. Fantini S, Ruesch A, Kainerstorfer JM. Noninvasive optical studies of the brain. : Shi L, Alfano RR, . Neurophotonics and biomedical spectroscopy. Amsterdam: Elsevier, 2018: 25–52.
    1. Scholkmann F, Kleiser S, Metz AJ, et al. . A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 2014;85:6–27. 10.1016/j.neuroimage.2013.05.004
    1. Chou P-H, Lan T-H. The role of near-infrared spectroscopy in Alzheimer’s disease. Journal of Clinical Gerontology and Geriatrics 2013;4:33–6. 10.1016/j.jcgg.2013.01.002
    1. Obrig H. NIRS in clinical neurology — a ‘promising’ tool? Neuroimage 2014;85:535–46. 10.1016/j.neuroimage.2013.03.045
    1. Yeung MK, Chan AS. Functional near-infrared spectroscopy reveals decreased resting oxygenation levels and task-related oxygenation changes in mild cognitive impairment and dementia: a systematic review. J Psychiatr Res 2020;124:58–76. 10.1016/j.jpsychires.2020.02.017
    1. Katzorke A, Zeller JBM, Müller LD, et al. . Decreased hemodynamic response in inferior frontotemporal regions in elderly with mild cognitive impairment. Psychiatry Res Neuroimaging 2018;274:11–18. 10.1016/j.pscychresns.2018.02.003
    1. Yeung MK, Sze SL, Woo J, et al. . Altered frontal lateralization underlies the category fluency deficits in older adults with mild cognitive impairment: a near-infrared spectroscopy study. Front Aging Neurosci 2016;8:59. 10.3389/fnagi.2016.00059
    1. Vermeij A, van Beek AHEA, Olde Rikkert MGM, et al. . Effects of aging on cerebral oxygenation during working-memory performance: a functional near-infrared spectroscopy study. PLoS One 2012;7:e46210. 10.1371/journal.pone.0046210
    1. Nguyen T, Kim M, Gwak J, et al. . Investigation of brain functional connectivity in patients with mild cognitive impairment: a functional near‐infrared spectroscopy (fNIRS) study. J Biophotonics 2019;12:e201800298. 10.1002/jbio.201800298
    1. Niu H-J, Li X, Chen Y-J, et al. . Reduced frontal activation during a working memory task in mild cognitive impairment: a non-invasive near-infrared spectroscopy study. CNS Neurosci Ther 2013;19:125–31. 10.1111/cns.12046
    1. Yang D, Hong K-S, Yoo S-H, et al. . Evaluation of neural degeneration biomarkers in the prefrontal cortex for early identification of patients with mild cognitive impairment: an fNIRS study. Front Hum Neurosci 2019;13:317. 10.3389/fnhum.2019.00317
    1. Yap KH, Ung WC, Ebenezer EGM, et al. . Visualizing hyperactivation in neurodegeneration based on prefrontal oxygenation: a comparative study of mild Alzheimer’s disease, mild cognitive impairment, and healthy controls. Front Aging Neurosci 2017;9:287. 10.3389/fnagi.2017.00287
    1. Yoo S-H, Hong K-S. Hemodynamics analysis of patients with mild cognitive impairment during working memory tasks. Conf Proc IEEE Eng Med Biol Soc 2019:4470–3.
    1. Cabeza R. Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 2002;17:85–100. 10.1037/0882-7974.17.1.85
    1. Michel CM, Murray MM. Towards the utilization of EEG as a brain imaging tool. Neuroimage 2012;61:371–85. 10.1016/j.neuroimage.2011.12.039
    1. Hampel H, Lista S, Teipel SJ. Perspective on future role of biological markers in clinical therapy trials of Alzheimer’s disease: a long-range point of view beyond 2020. Biochem Pharmacol 2014;88:426–49.
    1. Haroutunian V, Hoffman LB, Beeri MS, et al. . Is there a neuropathology difference between mild cognitive impairment and dementia? Dialogues Clin Neurosci 2009;11:171–9.
    1. Jelic V, Kowalski J. Evidence-Based evaluation of diagnostic accuracy of resting EEG in dementia and mild cognitive impairment. Clin EEG Neurosci 2009;40:129–42. 10.1177/155005940904000211
    1. Scheff SW, Price DA, Schmitt FA, et al. . Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 2006;27:1372–84. 10.1016/j.neurobiolaging.2005.09.012
    1. Al-Qazzaz NK, Ali SHBM, Ahmad SA, et al. . Role of EEG as biomarker in the early detection and classification of dementia. Sci World J 2014;2014:906038 10.1155/2014/906038
    1. Choi J, Ku B, You YG, et al. . Resting-State prefrontal EEG biomarkers in correlation with MMSE scores in elderly individuals. Sci Rep 2019;9:10468. 10.1038/s41598-019-46789-2
    1. Gouw AA, Stam CJ. Electroencephalography in the differential diagnosis of dementia. Epileptologie 2016;33:173
    1. Horvath A, Szucs A, Csukly G. EEG and ERP biomarkers of Alzheimer rsquo S disease a critical review. Frontiers in Bioscience 2018;23:183–220. 10.2741/4587
    1. Yang S, Bornot JMS, Wong-Lin K, et al. . M/EEG-based bio-markers to predict the MCI and Alzheimer’s disease: a review from the ML perspective. IEEE Trans Biomed Eng 2019;66:2924–35. 10.1109/TBME.2019.2898871
    1. Sur S, Sinha VK. Event-Related potential: an overview. Ind Psychiatry J 2009;18:70–3. 10.4103/0972-6748.57865
    1. Sakkalis V. Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med 2011;41:1110–7. 10.1016/j.compbiomed.2011.06.020
    1. Sarmukadam K, Sharpley CF, Bitsika V, et al. . A review of the use of EEG connectivity to measure the neurological characteristics of the sensory features in young people with autism. Rev Neurosci 2019;30:497–510. 10.1515/revneuro-2018-0070
    1. Schoffelen J-M, Gross J. Source connectivity analysis with MEG and EEG. Hum Brain Mapp 2009;30:1857–65. 10.1002/hbm.20745
    1. Schapkin SA, Raggatz J, Hillmert M. Eeg correlates of cognitive load in a multiple choice reaction task. Acta Neurobiol Exp 2020;80:76–89.
    1. Schomer DL, Lopes da Silva FH, . Niedermeyer’s electroencephalography: Basic principles, clinical applications, and related fields. 7th edn. New York: Oxford University Press, 2017.
    1. Laborde S, Mosley E, Thayer JF. Heart rate variability and cardiac vagal tone in psychophysiological research - Recommendations for experiment planning, data analysis, and data reporting. Front Psychol 2017;8:213. 10.3389/fpsyg.2017.00213
    1. McCraty R, Shaffer F. Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Health Med 2015;4:46–61. 10.7453/gahmj.2014.073
    1. Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol 2013;4. 10.3389/fphys.2013.00026
    1. Draghici AE, Taylor JA. The physiological basis and measurement of heart rate variability in humans. J Physiol Anthropol 2016;35:22. 10.1186/s40101-016-0113-7
    1. Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate variability. Front Psychol 2014;5:1040. 10.3389/fpsyg.2014.01040
    1. Fatisson J, Oswald V, Lalonde F. Influence diagram of physiological and environmental factors affecting heart rate variability: an extended literature overview. Heart Int 2016;11:heartint.500023. 10.5301/heartint.5000232
    1. Sammito S, Böckelmann I. Factors influencing heart rate variability. ICFJ 2016;6. 10.17987/icfj.v6i0.242
    1. Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol 2010;141:122–31. 10.1016/j.ijcard.2009.09.543
    1. Thayer JF, Lane RD. A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord 2000;61:201–16. 10.1016/S0165-0327(00)00338-4
    1. Thayer JF, Hansen AL, Saus-Rose E, et al. . Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann Behav Med 2009;37:141–53. 10.1007/s12160-009-9101-z
    1. Thayer JF, Lane RD. Claude Bernard and the heart–brain connection: further elaboration of a model of neurovisceral integration. Neurosci Biobehav Rev 2009;33:81–8. 10.1016/j.neubiorev.2008.08.004
    1. Forte G, Favieri F, Casagrande M. And cognitive function: a systematic review. Front Neurosci 2019;13:710.
    1. Eggenberger P, Annaheim S, Kündig KA, et al. . Heart rate variability mainly relates to cognitive executive functions and improves through Exergame training in older adults: a secondary analysis of a 6-month randomized controlled trial. Front Aging Neurosci 2020;12:197. 10.3389/fnagi.2020.00197
    1. Grässler B, Hökelmann A, Cabral RH. Resting heart rate variability as a possible marker of cognitive decline. Kinesiology 2020;52:72–84. 10.26582/k.52.1.9
    1. Zeki Al Hazzouri A, Haan MN, Deng Y, et al. . Reduced heart rate variability is associated with worse cognitive performance in elderly Mexican Americans. Hypertension 2014;63:181–7. 10.1161/HYPERTENSIONAHA.113.01888
    1. Kim DH, Lipsitz LA, Ferrucci L, et al. . Association between reduced heart rate variability and cognitive impairment in older disabled women in the community: Women’s health and aging study I. J Am Geriatr Soc 2006;54:1751–7. 10.1111/j.1532-5415.2006.00940.x
    1. da Silva VP, Ramalho Oliveira BR, Tavares Mello RG, et al. . Heart rate variability indexes in dementia: a systematic review with a quantitative analysis. Curr Alzheimer Res 2018;15:80–8. 10.2174/1567205014666170531082352
    1. Delliaux S, Delaforge A, Deharo J-C, et al. . Mental workload alters heart rate variability, lowering non-linear dynamics. Front Physiol 2019;10:565. 10.3389/fphys.2019.00565
    1. Mukherjee S, Yadav R, Yung I, et al. . Sensitivity to mental effort and test-retest reliability of heart rate variability measures in healthy seniors. Clin Neurophysiol 2011;122:2059–66. 10.1016/j.clinph.2011.02.032
    1. Sassi R, Cerutti S, Lombardi F, et al. . Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working group and the European heart rhythm association co-endorsed by the Asia Pacific heart rhythm Society. Europace 2015;17:1341–53. 10.1093/europace/euv015
    1. Young H, Benton D. We should be using nonlinear indices when relating heart-rate dynamics to cognition and mood. Sci Rep 2015;5:16619. 10.1038/srep16619
    1. Fernandes de Godoy M, Department of Cardiology and Cardiovascular Surgery, S鉶 Jose do Rio Preto Medical School, Famerp, Brazil . Nonlinear analysis of heart rate variability: a comprehensive review. J Cardiol Ther 2016;3:528–33. 10.17554/j.issn.2309-6861.2016.03.101-4
    1. Bari V, Calcagnile P, Molteni E, et al. . From neurovascular coupling to neurovascular cascade: a study on neural, autonomic and vascular transients in attention. Physiol Meas 2012;33:1379–97. 10.1088/0967-3334/33/8/1379
    1. Ha U, Lee Y, Kim H. A wearable EEG-HEG-HRV multimodal system with simultaneous monitoring of tES for mental health management. IEEE Trans Biomed Circuits Syst 2015;9:758–66.
    1. Chiarelli AM, Zappasodi F, Di Pompeo F, et al. . Simultaneous functional near-infrared spectroscopy and electroencephalography for monitoring of human brain activity and oxygenation: a review. Neurophotonics 2017;4:1. 10.1117/1.NPh.4.4.041411
    1. Alba G, Vila J, Rey B, et al. . The relationship between heart rate variability and electroencephalography functional connectivity variability is associated with cognitive flexibility. Front Hum Neurosci 2019;13:64. 10.3389/fnhum.2019.00064
    1. Hillmert M, Bergmüller A, Minow A. Psychophysiologische Beanspruchungskorrelate während kognitiver Belastung. Zbl Arbeitsmed 2020:1–15.
    1. Brugnera A, Adorni R, Compare A, et al. . Cortical and autonomic patterns of emotion experiencing during a recall task. J Psychophysiol 2018;32:53–63. 10.1027/0269-8803/a000183
    1. Aghajani H, Garbey M, Omurtag A. Measuring mental workload with EEG+fNIRS. Front Hum Neurosci 2017;11:359. 10.3389/fnhum.2017.00359
    1. Ahn JW, Ku Y, Kim HC. A novel wearable EEG and ECG recording system for stress assessment. Sensors 2019;19:1991. 10.3390/s19091991
    1. Al-Shargie F, Tang TB, Kiguchi M. Stress assessment based on decision fusion of EEG and fNIRS signals. IEEE Access 2017;5:19889–96. 10.1109/ACCESS.2017.2754325
    1. Li R, Nguyen T, Potter T, et al. . Dynamic cortical connectivity alterations associated with Alzheimer’s disease: An EEG and fNIRS integration study. Neuroimage 2019;21:101622. 10.1016/j.nicl.2018.101622
    1. Li R, Potter T, Huang W, et al. . Enhancing performance of a hybrid EEG-fNIRS system using channel selection and early temporal features. Front Hum Neurosci 2017;11:462. 10.3389/fnhum.2017.00462
    1. Liu Y, Ayaz H, Shewokis PA. Multisubject “learning” for mental workload classification using concurrent EEG, fNIRS, and physiological measures. Front Hum Neurosci 2017;11:389. 10.3389/fnhum.2017.00389
    1. Morioka H, Kanemura A, Morimoto S, et al. . Decoding spatial attention by using cortical currents estimated from electroencephalography with near-infrared spectroscopy prior information. Neuroimage 2014;90:128–39. 10.1016/j.neuroimage.2013.12.035
    1. Shin J, Kwon J, Im C-H. A ternary hybrid EEG-NIRS brain-computer interface for the classification of brain activation patterns during mental arithmetic, motor imagery, and idle state. Front Neuroinform 2018;12:5. 10.3389/fninf.2018.00005
    1. Nicolini P, Ciulla MM, Malfatto G, et al. . Autonomic dysfunction in mild cognitive impairment: evidence from power spectral analysis of heart rate variability in a cross-sectional case-control study. PLoS ONE 2014;9:e96656. 10.1371/journal.pone.0096656
    1. Lai C-L, Lin R-T, Liou L-M, et al. . The role of event-related potentials in cognitive decline in Alzheimer’s disease. Clin Neurophysiol 2010;121:194–9. 10.1016/j.clinph.2009.11.001
    1. Faul F, Erdfelder E, Lang A-G, et al. . G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Method 2007;39:175–91. 10.3758/BF03193146
    1. Ahn S, Nguyen T, Jang H, et al. . Exploring neuro-physiological correlates of drivers’ mental fatigue caused by sleep deprivation using simultaneous EEG, ECG, and fNIRS data. Front Hum Neurosci 2016;10:219. 10.3389/fnhum.2016.00219
    1. Sperling RA, Aisen PS, Beckett LA, et al. . Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7:280–92. 10.1016/j.jalz.2011.03.003
    1. Morris JC, Mohs RC, Rogers H, et al. . Consortium to establish a Registry for Alzheimer’s disease (CERAD) clinical and neuropsychological assessment of Alzheimer’s disease. Psychopharmacol Bull 1988;24:641–52.
    1. Barth S, Schönknecht P, Pantel J, et al. . Neuropsychologische profile in Der Demenzdiagnostik: Eine Untersuchung MIT Der CERAD-NP-Testbatterie. Fortschr Neurol Psychiatr 2005;73:568–76. 10.1055/s-2004-830249
    1. Huy C, Schneider S. Instrument für die Erfassung der physischen Aktivität bei Personen im mittleren und höheren Erwachsenenalter. Entwicklung, Prüfung und Anwendung des “German-PAQ-50+”. Z Gerontol Geriatr 2008;41:209–16.
    1. Ware JE. Sf-36 health survey update. Spine 2000;25:3130–9. 10.1097/00007632-200012150-00008
    1. Buysse DJ, Reynolds CF, Monk TH, et al. . The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res 1989;28:193–213. 10.1016/0165-1781(89)90047-4
    1. Haftenberger M, Heuer T, Heidemann C, et al. . Relative validation of a food frequency questionnaire for national health and nutrition monitoring. Nutr J 2010;9:36. 10.1186/1475-2891-9-36
    1. Fahrenberg J, Schönpflug W. Methoden Der Aktivierungsforschung. Bern, Stuttgart, Wien: Hans Huber, 1969.
    1. Hancock PA, . Human mental workload. Amsterdam: North-Holland, 1988.
    1. Longo L. On the reliability, validity and sensitivity of three mental workload assessment techniques for the evaluation of instructional designs: a case study in a Third-level course. in: proceedings of the 10th International Conference on computer supported education. SCITEPRESS - Science and Technology Publications, 2018: 166–78.
    1. Stroop JR. Studies of interference in serial verbal reactions. Journal of Psychol 1935;18:643–62. 10.1037/h0054651
    1. Bélanger S, Belleville S, Gauthier S. Inhibition impairments in Alzheimer’s disease, mild cognitive impairment and healthy aging: effect of Congruency proportion in a Stroop task. Neuropsychologia 2010;48:581–90. 10.1016/j.neuropsychologia.2009.10.021
    1. Sun J, Sun B, Zhang L, et al. . Correlation between hemodynamic and electrophysiological signals dissociates neural correlates of conflict detection and resolution in a Stroop task: a simultaneous near-infrared spectroscopy and event-related potential study. J Biomed Opt 2013;18:96014. 10.1117/1.JBO.18.9.096014
    1. Mansouri C, Kashou NH. Spatial sensitivity of near-infrared spectroscopic brain imaging based on three-dimensional Monte Carlo modeling. Conf Proc IEEE Eng Med Biol Soc 2009:1457–60.
    1. Badzakova-Trajkov G, Barnett KJ, Waldie KE, et al. . An Erp investigation of the Stroop task: the role of the cingulate in attentional allocation and conflict resolution. Brain Res 2009;1253:139–48. 10.1016/j.brainres.2008.11.069
    1. Egner T, Hirsch J. The neural correlates and functional integration of cognitive control in a Stroop task. Neuroimage 2005;24:539–47. 10.1016/j.neuroimage.2004.09.007
    1. Compton RJ, Huber E, Levinson AR, et al. . Is “conflict adaptation” driven by conflict? Behavioral and EEG evidence for the underappreciated role of congruent trials. Psychophysiology 2012;49:583–9. 10.1111/j.1469-8986.2012.01354.x
    1. Satish P, Muralikrishnan K, Balasubramanian K. Heart rate variability changes during stroop color and word test among genders. Indian J Physiol Pharmacol 2015;59:9–15.
    1. Baumert A, Buchholz N, Zinkernagel A, et al. . Causal underpinnings of working memory and Stroop interference control: testing the effects of anodal and cathodal tDCS over the left DLPFC. Cogn Affect Behav Neurosci 2020;20:34–48. 10.3758/s13415-019-00726-y
    1. Kirchner WK. Age differences in short-term retention of rapidly changing information. J Exp Psychol 1958;55:352–8. 10.1037/h0043688
    1. Herrmann MJ, Langer JBM, Jacob C, et al. . Reduced prefrontal oxygenation in Alzheimer disease during verbal fluency tasks. Am J Geriatr Psychiatry 2008;16:125–35. 10.1097/JGP.0b013e3180cc1fbc
    1. Aschenbrenner S, Tucha O, Lange KW. Regensburger Wortflüssigkeits-Test: RWT. Handanweisung. Göttingen: Hogrefe Verl. für Psychologie, 2000.
    1. Heinzel S, Metzger FG, Ehlis A-C, et al. . Age and vascular burden determinants of cortical hemodynamics underlying verbal fluency. PLoS One 2015;10:e0138863. 10.1371/journal.pone.0138863
    1. Jurcak V, Tsuzuki D, Dan I. 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 2007;34:1600–11. 10.1016/j.neuroimage.2006.09.024
    1. Zimeo Morais GA, Balardin JB, Sato JR. fNIRS optodes’ location Decider (fOLD): a toolbox for probe arrangement guided by brain regions-of-interest. Sci Rep 2018;8:3341. 10.1038/s41598-018-21716-z
    1. Rorden C, Brett M. Stereotaxic display of brain lesions. Behav Neurol 2000;12:191–200. 10.1155/2000/421719
    1. Tachtsidis I, Scholkmann F. False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward. Neurophotonics 2016;3:030401. 10.1117/1.NPh.3.3.030401
    1. Pinti P, Scholkmann F, Hamilton A, et al. . Current status and issues regarding pre-processing of fNIRS neuroimaging data: an investigation of diverse signal filtering methods within a general linear model framework. Front Hum Neurosci 2018;12:505. 10.3389/fnhum.2018.00505
    1. Huppert TJ, Diamond SG, Franceschini MA, et al. . HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl Opt 2009;48:D280–98. 10.1364/AO.48.00D280
    1. Brigadoi S, Ceccherini L, Cutini S, et al. . Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data. Neuroimage 2014;85:181–91. 10.1016/j.neuroimage.2013.04.082
    1. Scholkmann F, Wolf M. General equation for the differential pathlength factor of the frontal human head depending on wavelength and age. J Biomed Opt 2013;18:105004. 10.1117/1.JBO.18.10.105004
    1. Jahani S, Fantana AL, Harper D, et al. . fNIRS can robustly measure brain activity during memory encoding and retrieval in healthy subjects. Sci Rep 2017;7:9533. 10.1038/s41598-017-09868-w
    1. von Lühmann A, Li X, Müller K-R, et al. . Improved physiological noise regression in fNIRS: a multimodal extension of the general linear model using temporally embedded canonical correlation analysis. Neuroimage 2020;208:116472. 10.1016/j.neuroimage.2019.116472
    1. Kropotov ID. Quantitative EEG, event-related potentials and neurotherapy. 1st edn. Amsterdam, Boston, London: Elsevier/Academic, 2009.
    1. Lei X, Liao K. Understanding the influences of EEG reference: a large-scale brain network perspective. Front Neurosci 2017;11:205. 10.3389/fnins.2017.00205
    1. Malik M. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 1996;93:1043–65.
    1. Sammito S, Thielmann B, Seibt R, et al. . Guideline for the application of heart rate and heart rate variability in occupational medicine and occupational science. ASUI 2015;2015. 10.17147/ASUI.2015-06-09-03
    1. Chen S-Y, Feng Z, Yi X. A general introduction to adjustment for multiple comparisons. J Thorac Dis 2017;9:1725–9. 10.21037/jtd.2017.05.34
    1. Dahne S, Bieszmann F, Samek W, et al. . Multivariate machine learning methods for fusing multimodal functional neuroimaging data. Proc IEEE Inst Electr Electron Eng 2015;103:1507–30. 10.1109/JPROC.2015.2425807
    1. Hong K-S, Khan MJ, Hong MJ. Feature extraction and classification methods for hybrid fNIRS-EEG brain-computer interfaces. Front Hum Neurosci 2018;12:246. 10.3389/fnhum.2018.00246
    1. Murty MN, Raghava R. Support vector machines and perceptrons. Cham: Springer International Publishing, 2016.
    1. Ranchet M, Morgan JC, Akinwuntan AE, et al. . Cognitive workload across the spectrum of cognitive impairments: a systematic review of physiological measures. Neurosci Biobehav Rev 2017;80:516–37. 10.1016/j.neubiorev.2017.07.001

Source: PubMed

3
Tilaa