A Single Administration of OC-01 (Varenicline Solution) Nasal Spray Induces Short-Term Alterations in Conjunctival Goblet Cells in Patients with Dry Eye Disease

Gabriela M Dieckmann, Stephanie M Cox, Maria J Lopez, M Cuneyt Ozmen, Leyla Yavuz Saricay, Betul N Bayrakutar, William W Binotti, Eugenia Henry, Jeffrey Nau, Pedram Hamrah, Gabriela M Dieckmann, Stephanie M Cox, Maria J Lopez, M Cuneyt Ozmen, Leyla Yavuz Saricay, Betul N Bayrakutar, William W Binotti, Eugenia Henry, Jeffrey Nau, Pedram Hamrah

Abstract

Introduction: Dry eye disease is characterized by a persistently unstable or deficient tear film causing discomfort or visual impairment. Varenicline is a small-molecule nicotinic acetylcholine receptor agonist recently approved for use as a preservative-free nasal spray (OC-01 [varenicline solution] nasal spray [OC-01 VNS]) to treat signs and symptoms of dry eye disease, but its effect on conjunctival goblet cells has not been studied.

Methods: In this phase 2, single-center, vehicle-controlled study, patients aged 18 years or more with a diagnosis of dry eye disease and Ocular Surface Disease Index© score of at least 23 were randomized 2:1 to receive a 50-µL single dose of OC-01 0.06 mg VNS or vehicle nasal spray in each nostril. Image assessments for area and perimeter were performed pre and 10 min post treatment for goblet cells by in vivo confocal microscopy and for meibomian glands by infrared meibography. Non-parametric Wilcoxon signed-rank test compared pre- and post-treatment measurements for each treatment group. Treatment-emergent adverse events (TEAEs) were assessed.

Results: The study randomized 18 patients (mean age 61 years); 6 received vehicle (3/6 [50%] female) and 12 patients received OC-01 VNS (11/12 [92%] female). OC-01 VNS treatment decreased mean goblet cell area (pre-treatment, 106.4 µm2; post-treatment, 67.6 µm2; p = 0.02) and perimeter (pre-treatment, 38.9 µm; post-treatment, 31.2 µm; p = 0.03) but not vehicle did not (p = 0.25). There were no significant changes in mean meibomian gland area with either treatment (p ≥ 0.05). All TEAEs were non-ocular, non-serious, and mild.

Conclusions: This study demonstrated that a single administration of OC-01 0.06 mg VNS in patients with dry eye disease reduced conjunctival goblet cell area and perimeter, suggesting goblet cell degranulation and associated release of lubricating mucin. By activating the natural tear film, OC-01 VNS may provide benefits over topical medications.

Trial registration: ClinicalTrials.gov, NCT03688802.

Keywords: Clinical trial, phase 2; Conjunctiva; Dry eye disease; Goblet cells; OC-01 (varenicline solution) nasal spray.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Participant flow. OC-01 VNS OC-01 (varenicline solution) nasal spray
Fig. 2
Fig. 2
Goblet cell a area change, b perimeter change from pre to post treatment (both eyes; primary efficacy endpoints), and c image for OC-01 VNS. Inserts present a mean goblet cell area pre treatment and b mean goblet cell perimeter pre treatment. OC-01 VNS OC-01 (varenicline solution) nasal spray, SD standard deviation
Fig. 3
Fig. 3
Meibomian gland a area change, b perimeter change from pre to post treatment (both eyes), and c image for OC-01 VNS. OC-01 VNS OC-01 (varenicline solution) nasal spray, SD standard deviation

References

    1. MarketScope. 2021 Dry eye products market report. 2021. . Accessed Feb 9 2022.
    1. Tsubota K, Pflugfelder SC, Liu Z, et al. Defining dry eye from a clinical perspective. Int J Mol Sci. 2020;21(23):9271. doi: 10.3390/ijms21239271.
    1. O'Neil EC, Henderson M, Massaro-Giordano M, Bunya VY. Advances in dry eye disease treatment. Curr Opin Ophthalmol. 2019;30(3):166–178. doi: 10.1097/ICU.0000000000000569.
    1. Aggarwal S, Galor A. What's new in dry eye disease diagnosis? Current advances and challenges. F1000Res. 2018;7(F1000 Faculty Rev):1952. 10.12688/f1000research.16468.1.
    1. Dartt DA. Neural regulation of lacrimal gland secretory processes: relevance in dry eye diseases. Prog Retin Eye Res. 2009;28(3):155–177. doi: 10.1016/j.preteyeres.2009.04.003.
    1. Labetoulle M, Baudouin C, Calonge M, et al. Role of corneal nerves in ocular surface homeostasis and disease. Acta Ophthalmol. 2019;97(2):137–145. doi: 10.1111/aos.13844.
    1. Georgiev GA, Eftimov P, Yokoi N. Contribution of mucins towards the physical properties of the tear film: a modern update. Int J Mol Sci. 2019;20(24):6132. doi: 10.3390/ijms20246132.
    1. Dartt DA, McCarthy DM, Mercer HJ, Kessler TL, Chung EH, Zieske JD. Localization of nerves adjacent to goblet cells in rat conjunctiva. Curr Eye Res. 1995;14(11):993–1000. doi: 10.3109/02713689508998520.
    1. Diebold Y, Ríos JD, Hodges RR, Rawe I, Dartt DA. Presence of nerves and their receptors in mouse and human conjunctival goblet cells. Invest Ophthalmol Vis Sci. 2001;42(10):2270–2282.
    1. Brundl M, Garreis F, Schicht M, Dietrich J, Paulsen F. Characterization of the innervation of the meibomian glands in humans, rats and mice. Ann Anat. 2021;233:151609. doi: 10.1016/j.aanat.2020.151609.
    1. Kovács I, Ludány A, Koszegi T, et al. Substance P released from sensory nerve endings influences tear secretion and goblet cell function in the rat. Neuropeptides. 2005;39(4):395–402. doi: 10.1016/j.npep.2005.04.003.
    1. Alimohammadi H, Silver WL. Evidence for nicotinic acetylcholine receptors on nasal trigeminal nerve endings of the rat. Chem Senses. 2000;25(1):61–66. doi: 10.1093/chemse/25.1.61.
    1. Wirta D, Torkildsen G, Boehmer B, et al. ONSET-1 phase 2b randomized trial to evaluate the safety and efficacy of OC-01 (varenicline solution) nasal spray on signs and symptoms of dry eye disease. Cornea. 2021 doi: 10.1097/ICO.0000000000002941.
    1. Wirta D, Vollmer P, Paauw J, et al.. Efficacy and safety of OC-01 (varenicline) nasal spray on signs and symptoms of dry eye disease: the ONSET-2 phase 3, randomized trial. Ophthalmology. 2021. 10.1016/j.ophtha.2021.11.004.
    1. Pondelis N, Dieckmann GM, Jamali A, Kataguiri P, Senchyna M, Hamrah P. Infrared meibography allows detection of dimensional changes in meibomian glands following intranasal neurostimulation. Ocul Surf. 2020;18(3):511–516. doi: 10.1016/j.jtos.2020.03.003.
    1. Colorado LH, Alzahrani Y, Pritchard N, Efron N. Time course of changes in goblet cell density in symptomatic and asymptomatic contact lens wearers. Invest Ophthalmol Vis Sci. 2016;57(6):2888–2894. doi: 10.1167/iovs.16-19298.
    1. Kojima T, Matsumoto Y, Dogru M, Tsubota K. The application of in vivo laser scanning confocal microscopy as a tool of conjunctival in vivo cytology in the diagnosis of dry eye ocular surface disease. Mol Vis. 2010;16:2457–2464.
    1. Di Staso S, Agnifili L, Ciancaglini M, Murano G, Borrelli E, Mastropasqua L. In vivo scanning laser confocal microscopy of conjunctival goblet cells in medically-controlled glaucoma. In Vivo. 2018;32(2):437–443. doi: 10.21873/invivo.11259.
    1. Wakamatsu TH, Sato EA, Matsumoto Y, et al. Conjunctival in vivo confocal scanning laser microscopy in patients with Sjögren syndrome. Invest Ophthalmol Vis Sci. 2010;51(1):144–150. doi: 10.1167/iovs.08-2722.
    1. Swamynathan SK, Wells A. Conjunctival goblet cells: ocular surface functions, disorders that affect them, and the potential for their regeneration. Ocul Surf. 2020;18(1):19–26. doi: 10.1016/j.jtos.2019.11.005.
    1. Gipson IK. Goblet cells of the conjunctiva: a review of recent findings. Prog Retin Eye Res. 2016;54:49–63. doi: 10.1016/j.preteyeres.2016.04.005.
    1. Hori Y. Secreted mucins on the ocular surface. Invest Ophthalmol Vis Sci. 2018;59(14):DES151–6. 10.1167/iovs.17-23623.
    1. Gumus K, Schuetzle KL, Pflugfelder SC. Randomized controlled crossover trial comparing the impact of sham or intranasal tear neurostimulation on conjunctival goblet cell degranulation. Am J Ophthalmol. 2017;177:159–168. doi: 10.1016/j.ajo.2017.03.002.
    1. Periman LM, Mah FS, Karpecki PM. A review of the mechanism of action of cyclosporine A: the role of cyclosporine A in dry eye disease and recent formulation developments. Clin Ophthalmol. 2020;14:4187–4200. doi: 10.2147/OPTH.S279051.
    1. Sheppard JD, Torkildsen GL, Geffin JA, et al. Characterization of tear production in subjects with dry eye disease during intranasal tear neurostimulation: results from two pivotal clinical trials. Ocul Surf. 2019;17(1):142–150. doi: 10.1016/j.jtos.2018.11.009.
    1. Woodward A, Senchyna M, Franke M, Holdbrook M, Argueso P. Effect of intranasal neurostimulation on tear protein content in patients with dry eye. Invest Ophthalmol Vis Sci. 2017;58(8):2673.
    1. Friedman NJ, Butron K, Robledo N, Loudin J, Baba SN, Chayet A. A nonrandomized, open-label study to evaluate the effect of nasal stimulation on tear production in subjects with dry eye disease. Clin Ophthalmol. 2016;10:795–804. doi: 10.2147/OPTH.S101716.
    1. Contreras-Ruiz L, Masli S. Immunomodulatory cross-talk between conjunctival goblet cells and dendritic cells. PLoS One. 2015;10(3):e0120284. doi: 10.1371/journal.pone.0120284.
    1. Pflugfelder SC, de Paiva CS. Goblet cells promote tolerance induction in the conjunctiva. Mucosal Immunol. 2020;13(5):717–718. doi: 10.1038/s41385-020-0319-1.
    1. Conrady CD, Joos ZP, Patel BC. Review: the lacrimal gland and its role in dry eye. J Ophthalmol. 2016;2016:7542929. doi: 10.1155/2016/7542929.

Source: PubMed

3
Tilaa