Phase I randomized safety study of twice daily dosing of acidform vaginal gel: candidate antimicrobial contraceptive

Marla J Keller, Colleen A Carpenter, Yungtai Lo, Mark H Einstein, Congzhou Liu, David N Fredricks, Betsy C Herold, Marla J Keller, Colleen A Carpenter, Yungtai Lo, Mark H Einstein, Congzhou Liu, David N Fredricks, Betsy C Herold

Abstract

Background: Acidform gel, an acid-buffering product that inactivates spermatozoa, may be an effective topical non-hormonal contraceptive. This study was designed to evaluate the safety of vaginal dosing and effects of Acidform on mucosal immune mediators, antimicrobial properties of genital secretions, and vaginal microbiota.

Methods: Thirty-six sexually abstinent U.S. women were randomized to apply Acidform or hydroxyethylcellulose (HEC) placebo gel twice daily for 14 consecutive days. Safety was assessed by symptoms and pelvic examination. The impact of gel on mucosal immunity was assessed by quantifying cytokines, chemokines, antimicrobial proteins and antimicrobial activity of genital secretions collected by cervicovaginal lavage (CVL) at screening, 2 hours after gel application, and on days 7, 14 and 21. Vaginal microbiota was characterized at enrollment and day 14 using species-specific quantitative PCR assays.

Results: The median vaginal and cervical pH was significantly lower 2 hours after application of Acidform and was associated with an increase in the bactericidal activity of CVL against E. coli. However, 65% of women who received Acidform had at least one local adverse event compared with 11% who received placebo (p = 0.002). While there was no increase in inflammatory cytokines or chemokines, CVL concentrations of lactoferrin and interleukin-1 receptor antagonist (IL-1ra), an anti-inflammatory protein, were significantly lower following Acidform compared to HEC placebo gel application. There were no significant changes in Lactobacillus crispatus or Lactobacillus jensenii in either group but there was a decrease in Gardnerella vaginalis in the Acidform group (p = 0.08).

Conclusions: Acidform gel may augment mucosal defense as evidenced by an increase in bactericidal activity of genital secretions against E. coli and a decrease in Gardnerella vaginalis colonization. However, Acidform was associated with more irritation than placebo and lower levels of antimicrobial (lactoferrin) and anti-inflammatory (IL-1ra) proteins. These findings indicate the need for additional safety studies of this candidate non-hormonal contraceptive.

Trial registration: ClinicalTrials.gov NCT00850837.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Trial profile.
Figure 1. Trial profile.
Figure 2. The pH of the vagina…
Figure 2. The pH of the vagina and cervix was significantly lower 2 hours after application of Acidform compared to HEC placebo gel.
Box-and-whisker plots showing the pH of the posterior fornix (a), lateral vaginal wall (b), cervix (c) and CVL (d) obtained at screening (Scr), 2 hours (2 h) and at Days 7, 14 and 21 after insertion of Acidform (white) or HEC placebo gel (gray). The line indicates the median values and the circles are outliers. The asterisks denote a significant difference between the Acidform and HEC placebo group.
Figure 3. The bactericidal activity of genital…
Figure 3. The bactericidal activity of genital tract secretions against E. coli was significantly greater 2 hours after application of Acidform compared to HEC placebo gel.
Box-and-whisker plots showing the percent inhibition of E. coli (a) and HSV-2 plaque formation (b) in CVL samples collected at screening (Scr), 2 hours (2 h) and at Days 7, 14 and 21 after insertion of Acidform (white) or HEC placebo gel (gray). The line indicates the median values and the circles are outliers. The asterisk denotes a significant difference between the Acidform and HEC placebo group.

References

    1. Heffron R, Donnell D, Rees H, Celum C, Mugo N, et al. (2012) Use of hormonal contraceptives and risk of HIV-1 transmission: a prospective cohort study. The Lancet infectious diseases 12: 19–26.
    1. Lavreys L, Baeten JM, Martin HL Jr, Overbaugh J, Mandaliya K, et al. (2004) Hormonal contraception and risk of HIV-1 acquisition: results of a 10-year prospective study. AIDS 18: 695–697.
    1. Martin HL Jr, Nyange PM, Richardson BA, Lavreys L, Mandaliya K, et al. (1998) Hormonal contraception, sexually transmitted diseases, and risk of heterosexual transmission of human immunodeficiency virus type 1. The Journal of infectious diseases 178: 1053–1059.
    1. Roddy RE, Zekeng L, Ryan KA, Tamoufe U, Tweedy KG (2002) Effect of nonoxynol-9 gel on urogenital gonorrhea and chlamydial infection: a randomized controlled trial. JAMA : the journal of the American Medical Association 287: 1117–1122.
    1. Roddy RE, Zekeng L, Ryan KA, Tamoufe U, Weir SS, et al. (1998) A controlled trial of nonoxynol 9 film to reduce male-to-female transmission of sexually transmitted diseases. The New England journal of medicine 339: 504–510.
    1. Van Damme L, Ramjee G, Alary M, Vuylsteke B, Chandeying V, et al. (2002) Effectiveness of COL-1492, a nonoxynol-9 vaginal gel, on HIV-1 transmission in female sex workers: a randomised controlled trial. Lancet 360: 971–977.
    1. Garg S, Anderson RA, Chany CJ, 2nd, Waller DP, Diao XH, et al (2001) Properties of a new acid-buffering bioadhesive vaginal formulation (ACIDFORM). Contraception 64: 67–75.
    1. Mayer KH, Peipert J, Fleming T, Fullem A, Moench T, et al. (2001) Safety and tolerability of BufferGel, a novel vaginal microbicide, in women in the United States. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 32: 476–482.
    1. van De Wijgert J, Fullem A, Kelly C, Mehendale S, Rugpao S, et al. (2001) Phase 1 trial of the topical microbicide BufferGel: safety results from four international sites. Journal of acquired immune deficiency syndromes 26: 21–27.
    1. Abdool Karim SS, Richardson BA, Ramjee G, Hoffman IF, Chirenje ZM, et al. (2011) Safety and effectiveness of BufferGel and 0.5% PRO2000 gel for the prevention of HIV infection in women. AIDS 25: 957–966.
    1. Barnhart KT, Rosenberg MJ, MacKay HT, Blithe DL, Higgins J, et al. (2007) Contraceptive efficacy of a novel spermicidal microbicide used with a diaphragm: a randomized controlled trial. Obstetrics and gynecology 110: 577–586.
    1. Tuyama AC, Cheshenko N, Carlucci MJ, Li JH, Goldberg CL, et al. (2006) ACIDFORM inactivates herpes simplex virus and prevents genital herpes in a mouse model: optimal candidate for microbicide combinations. The Journal of infectious diseases 194: 795–803.
    1. Pilipenko V, Bourne N, Zanefeld L, Garg S, Waller D, et al... (1999) A new nonoxynol-9 formulation (Acidform) significantly impacts experimental genital tract chlamydial infection in a mouse model. Programs and abstracts of the Conference of the International Society of Sexually Transmitted Diseases; Denver, Colorado, United States of America.
    1. Spencer SE, Valentin-Bon IE, Whaley K, Jerse AE (2004) Inhibition of Neisseria gonorrhoeae genital tract infection by leading-candidate topical microbicides in a mouse model. The Journal of infectious diseases 189: 410–419.
    1. Amaral E, Perdigao A, Souza MH, Mauck C, Waller D, et al. (2004) Postcoital testing after the use of a bio-adhesive acid buffering gel (ACIDFORM) and a 2% nonoxynol-9 product. Contraception 70: 492–497.
    1. Amaral E, Faundes A, Zaneveld L, Waller D, Garg S (1999) Study of the vaginal tolerance to Acidform, an acid-buffering, bioadhesive gel. Contraception 60: 361–366.
    1. Schwartz JL, Lai JJ, Crenin M, Bradley L, Thomas M, et al... (2006) Fourteen day safety and acceptability study of ACIDFORM gel: a randomized phase I safety study; Cape Town, South Africa.
    1. von Mollendorf CE, Van Damme L, Moyes JA, Rees VH, Callahan MM, et al. (2010) Results of a safety and feasibility study of the diaphragm used with ACIDFORM Gel or K-Y Jelly. Contraception 81: 232–239.
    1. The Division of AIDS Table for Grading the Severity of Adult and Pediatric Adverse Events, Version 1, December 2004. Available: . Accessed 2012 Mar 25.
    1. Tien D, Schnaare RL, Kang F, Cohl G, McCormick TJ, et al. (2005) In vitro and in vivo characterization of a potential universal placebo designed for use in vaginal microbicide clinical trials. AIDS research and human retroviruses 21: 845–853.
    1. Keller MJ, Madan RP, Torres NM, Fazzari MJ, Cho S, et al. (2011) A randomized trial to assess anti-HIV activity in female genital tract secretions and soluble mucosal immunity following application of 1% tenofovir gel. PloS one 6: e16475.
    1. Wallace AR, Teitelbaum A, Wan L, Mulima MG, Guichard L, et al. (2007) Determining the feasibility of utilizing the microbicide applicator compliance assay for use in clinical trials. Contraception 76: 53–56.
    1. Austin MN, Rabe LK, Hillier SL (2009) Limitations of the dye-based method for determining vaginal applicator use in microbicide trials. Sexually transmitted diseases 36: 368–371.
    1. Fredricks DN, Fiedler TL, Thomas KK, Mitchell CM, Marrazzo JM (2009) Changes in vaginal bacterial concentrations with intravaginal metronidazole therapy for bacterial vaginosis as assessed by quantitative PCR. Journal of clinical microbiology 47: 721–726.
    1. Khot PD, Ko DL, Hackman RC, Fredricks DN (2008) Development and optimization of quantitative PCR for the diagnosis of invasive aspergillosis with bronchoalveolar lavage fluid. BMC infectious diseases 8: 73.
    1. Fredricks DN, Fiedler TL, Thomas KK, Oakley BB, Marrazzo JM (2007) Targeted PCR for detection of vaginal bacteria associated with bacterial vaginosis. Journal of clinical microbiology 45: 3270–3276.
    1. Rosner B, editor (1999) Fundamentals of Biostatistics. 5th edition ed. Pacific Grove: Duxbury Press.
    1. Keller MJ, Guzman E, Hazrati E, Kasowitz A, Cheshenko N, et al. (2007) PRO 2000 elicits a decline in genital tract immune mediators without compromising intrinsic antimicrobial activity. AIDS 21: 467–476.
    1. Shrier LA, Bowman FP, Lin M, Crowley-Nowick PA (2003) Mucosal immunity of the adolescent female genital tract. The Journal of adolescent health : official publication of the Society for Adolescent Medicine 32: 183–186.
    1. Usala SJ, Usala FO, Haciski R, Holt JA, Schumacher GF (1989) IgG and IgA content of vaginal fluid during the menstrual cycle. The Journal of reproductive medicine 34: 292–294.
    1. Madan RP, Carpenter C, Fiedler T, Kalyoussef S, McAndrew TC, et al. (2012) Altered biomarkers of mucosal immunity and reduced vaginal lactobacillus concentrations in sexually active female adolescents. PloS one 7: e40415.
    1. Kalyoussef S, Nieves E, Dinerman C, Carpenter C, Viswanathan S, et al... (2012) Lactobacillus proteins are associated with the bactericidal activity against E. coli of female genital tract secretions. The Journal of infectious diseases submitted.
    1. Eschenbach DA, Patton DL, Hooton TM, Meier AS, Stapleton A, et al. (2001) Effects of vaginal intercourse with and without a condom on vaginal flora and vaginal epithelium. The Journal of infectious diseases 183: 913–918.
    1. Ghartey JP, Carpenter C, Gialanella P, Rising C, McAndrew TC, et al... (2012) Association of bactericidal activity of genital tract secretions with Escherichia coli colonization in pregnancy. American journal of obstetrics and gynecology in press.
    1. Marchetti M, Trybala E, Superti F, Johansson M, Bergstrom T (2004) Inhibition of herpes simplex virus infection by lactoferrin is dependent on interference with the virus binding to glycosaminoglycans. Virology 318: 405–413.
    1. Fredricks DN, Fiedler TL, Marrazzo JM (2005) Molecular identification of bacteria associated with bacterial vaginosis. The New England journal of medicine 353: 1899–1911.
    1. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, et al. (2011) Vaginal microbiome of reproductive-age women. Proceedings of the National Academy of Sciences of the United States of America 108 Suppl 1 4680–4687.
    1. Hogarty K, Kasowitz A, Herold BC, Keller MJ (2007) Assessment of adherence to product dosing in a pilot microbicide study. Sexually transmitted diseases 34: 1000–1003.
    1. Katzen LL, Fernandez-Romero JA, Sarna A, Murugavel KG, Gawarecki D, et al. (2011) Validation of a dye stain assay for vaginally inserted hydroxyethylcellulose-filled microbicide applicators. Sexually transmitted diseases 38: 1050–1055.
    1. Moench TR, O’Hanlon DE, Cone RA (2012) Evaluation of microbicide gel adherence monitoring methods. Sexually transmitted diseases 39: 335–340.

Source: PubMed

3
Tilaa