Involvement of hypoxia-inducible factors in the dysregulation of oxygen homeostasis in sepsis

Kiichi Hirota, Kiichi Hirota

Abstract

Sepsis is a state of infection with serious systemic manifestations, and if severe enough, can be associated with multiple organ dysfunction and systemic hypotension, which can cause tissues to be hypoxic. Inflammation, as part of the multifaceted biological response to injurious stimuli, such as pathogens or damaged tissues and cells, underlies these biological processes. Prolonged and persistent inflammation, also known as chronic inflammation, results in progressive alteration in the various types of cells at the site of inflammation and is characterized by the simultaneous destruction and healing of tissue during the process. Tissue hypoxia during inflammation is not just a simple bystander process, but can considerably affect the development or attenuation of inflammation by causing the regulation of hypoxia-dependent gene expression. Indeed, the study of transcriptionally regulated tissue adaptation to hypoxia requires intense investigation to help control hypoxia-induced inflammation and organ failure. In this review, I have described the pathophysiology of sepsis with respect to oxygen metabolism and expression of hypoxia-inducible factor 1.

Figures

Fig. (1)
Fig. (1)
Regulation of oxygen delivery. In sepsis or a systemic inflammatory response, distribution of blood flow is largely abnormal. Moreover, tissues and organs fail to use oxygen. Responses to hypoxia induce dysregulation in organ function. Original plan of this figure was based on [5, 79].
Fig. (2)
Fig. (2)
Regulation of HIF-1 in sepsis. Under normoxic conditions, the prolyl hydroxylases (PHDs) hydroxylases hypoxia-inducible factor 1α (HIF-1α) usign molecular O2 at amino acid residues 402 and 564. Hydroxylated proryl residues are target for polyubiquitylation of the HIF1α protein by von Hippel–Lindau (VHL) tumor suppressor protein. The uniqutined HIF1α are transported to the proteasomes and degradated. The asparaginyl hydroxylase factor inhibiting HIF-1 (FIH-1; also known as HIF1AN) functions in conjunction with the prolyl hydroxylation. The asparagine residue is located in the HIF-1α carboxy-terminal domain, which serves as a strong transcription facilitator. As all of these post-translational events depend on intracellular oxygen, they are inhibited by intracellular oxygen deprivation. In addition to hypoxia, HIF-1 can be activated by a microenvironment affected by sepsis and systemic inflammation. HRE: hypoxia response element, PHD: prolyl hydroxylation domain, FIH-1: factor-inhibiting HIF-1, SNP: sodium nitroprusside, ROS: reactive oxygen species, LPS: lipopolysaccharide.
Fig. (3)
Fig. (3)
Interdependence of HIF-1 and NF-κB. The transcription factors HIF-1 and NF-κB interdependently act on each other involving in intracellular regulation of inflammation. Thus, the interaction between the transcription factors, which are under regulation by oxygen metabolism of the inflammation site, plays an essential role in the progress of sepsis. The evidence strongly suggests that the oxygen homeostasis can be a therapeutic target of sepsis.

References

    1. Hirota K. Hypoxia and hypoxia-inducible factor in inflammation Chronic Inflammation: Mole. In: Roy S, editor; Taylor & Francis: Pathophysiol. Nutrit. Therap. Intervent; 2012. pp. 51–65.
    1. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101:1644–55.
    1. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R. Surviving Sepsis Campaign Guidelines Committee including the Pediatric S Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit. Care Med. 2013;41:580–637.
    1. Vodovotz Y, Billiar TR. In silico modeling: methods and applications to trauma and sepsis. Crit. Care Med. 2013;41:2008–14.
    1. Evans TW, Smithies M. ABC of intensive care: organ dysfunction. BMJ. 1999;318:1606–9.
    1. Russell JA. Management of sepsis. N. Engl. J. Med. 2006;355:1699–713.
    1. Lee WL, Slutsky AS. Sepsis and endothelial permeability. N. Engl. J. Med. 2010;363:689–91.
    1. Williams SCP. After Xigris, researchers look to new targets to combat sepsis. Nat. Med. Jul,Sect. 2012;1001
    1. Zinkernagel AS, Johnson RS, Nizet V. Hypoxia inducible factor (HIF) function in innate immunity and infection. J. Mol. 2007;85:1339–46.
    1. Hayden WR. Sepsis and organ failure definitions and guidelines. Crit. Care Med. 1993;21:1612–3.
    1. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. journal name. 2012;307:2526–33.
    1. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428–35.
    1. Weiss U. Inflammation. Nature. 2008;454:427–0.
    1. Dehne N, Brüne B. HIF-1 in the inflammatory micro-environment. Exp. Cell Res. 2009;315:1791–7.
    1. Riedemann NC, Guo RF, Ward PA. The enigma of sepsis. J. Clin. Invest. 2003;112:460–7.
    1. Reinhart K, Bayer O, Brunkhorst F, Meisner M. Markers of endothelial damage in organ dysfunction and sepsis. Crit. Care Med. 2002;30:S302–12.
    1. London NR, Zhu W, Bozza FA, Smith MCP, Greif DM, Sorensen LK, Chen L, Kaminoh Y, Chan AC, Passi SF, Day CW, Barnard DL, Zimmerman GA, Krasnow MA, Li DY. Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza. Sci. Transl. Med. 2010;2:23ra19–0.
    1. Jones CA, London NR, Chen H, Park KW, Sauvaget D, Stockton RA, Wythe JD, Suh W, Larrieu-Lahargue F, Mukouyama Y-S, Lindblom P, Seth P, Frias A, Nishiya N, Ginsberg MH, Gerhardt H, Zhang K, Li DY. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat. Med. 2008;14:448–53.
    1. Ince C. The microcirculation unveiled. Am. J. Respir. Crit. Care Med. 2002;166:1–2.
    1. Tyagi A, Sethi AK, Girotra G, Mohta M. The microcirculation in sepsis. Indian J. Anaesth. 2009;53:281–93.
    1. Lehr HA, Bittinger F, Kirkpatrick CJ. Microcirculatory dysfunction in sepsis: a pathogenetic basis for therapy? J. Pathol. 2000;190:373–86.
    1. Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N. Engl. J. Med. 2011;364:656–65.
    1. Eltzschig HK. Targeting Hypoxia-induced Inflammation. Anesthesi. 2011;114:239–42.
    1. Fink MP. Bench-to-bedside review: Cytopathic hypoxia. Crit. Care. 2002;6:491–9.
    1. Semenza GL. Life with oxygen. Science. 2007;318:62–4.
    1. Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL. Acute oxygen-sensing mechanisms. N. Engl. J. Med. 2005;353:2042–55.
    1. Kruger B, Krick S, Dhillon N, Lerner SM, Ames S, Bromberg JS, Lin M, Walsh L, Vella J, Fischereder M, Kramer BK, Colvin RB, Heeger PS, Murphy BT, Schroppel B. Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc. Natl. Acad. Sci. USA. 2009;106:3390–5.
    1. Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, Brochard L, Brower R, Esteban A, Gattinoni L, Rhodes A, Slutsky AS, Vincent JL, Rubenfeld GD, Thompson BT, Ranieri VM. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Inten. Care Med. 2012;38:1573–82.
    1. Suganami T, Ogawa Y. Adipose tissue macrophages: their role in adipose tissue remodeling. J. Leukoc. Biol. 2010;88:33–9.
    1. Grocott M, Montgomery H, Vercueil A. High-altitude physiology and pathophysiology: implications and relevance for intensive care medicine. Crit. Care. 2007;11:203–0.
    1. Richard NA, Sahota IS, Widmer N, Ferguson S, Sheel AW, Koehle MS. Acute Mountain Sickness, Chemosensitivity and Cardio-Respiratory Responses in Humans Exposed to Hypobaric and Normobaric Hypoxia. J. Appl. Physiol. 2014;116(7):945–5232.
    1. Peacock AJ. ABC of oxygen: oxygen at high altitude. BMJ. 1998;317:1063–6.
    1. Grocott MP, Martin DS, Levett DZ, McMorrow R, Windsor J, Montgomery HE. Caudwell Xtreme Everest Research G Arterial blood gases and oxygen content in climbers on Mount Everest. N. Engl. J. Med. 2009;360:140–9.
    1. Hirota K. Hypoxia-inducible factor 1, a master transcription factor of cellular hypoxic gene expression. J. Anesth. 2002;16:150–9.
    1. Wang G, Jiang B, Rue E, Semenza G. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA. 1995;92:5510–4.
    1. Semenza GL. Oxygen sensing, homeostasis, and disease. N. Engl. J. Med. 2011;365:537–47.
    1. Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, Garcia JG, Semenza GL. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood . 2005;105:659–69.
    1. Hirota K, Semenza GL. Regulation of hypoxia-inducible factor 1 by prolyl and asparaginyl hydroxylases. Biochem. Biophys. Res. Commun. 2005;338:610–6.
    1. Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 2004;5:343–54.
    1. Kaelin WG, Jr. Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell. 2008;30:393–402.
    1. Epstein A, Gleadle J, McNeill L, Hewitson K, O'Rourke J, Mole D, Mukherji M, Metzen E, Wilson M, Dhanda A, Tian Y, Masson N, Hamilton D, Jaakkola P, Barstead R, Hodgkin J, Maxwell P, Pugh C, Schofield C, Ratcliffe PC. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001;107:43–54.
    1. Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 2002;16:1466–71.
    1. Mahon PC, Hirota K, Semenza GL. FIH-1: a novel protein that interacts with HIF-1a and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 2001;15:2675–86.
    1. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271–5.
    1. Mimura I, Kanki Y, Kodama T, Nangaku M. Revolution of nephrology research by deep sequencing: ChIP-seq and RNA-seq. Kidney Int. 2014;85:31–8.
    1. Mimura I, Nangaku M, Kanki Y, Tsutsumi S, Inoue T, Kohro T, Yamamoto S, Fujita T, Shimamura T, Suehiro J, Taguchi A, Kobayashi M, Tanimura K, Inagaki T, Tanaka T, Hamakubo T, Sakai J, Aburatani H, Kodama T, Wada Y. Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol. Cell Biol. 2012;32:3018–32.
    1. Semenza GL, Prabhakar NR. HIF-1-dependent respiratory, cardiovascular, and redox responses to chronic intermittent hypoxia. Antioxid. Redox Signal. 2007;9:1391–6.
    1. Semenza GL, Prabhakar NR. The role of hypoxia-inducible factors in oxygen sensing by the carotid body. Adv. Exp. Med. Biol. 2012;758:1–5.
    1. Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol. Rev. 2012;92:967–1003.
    1. Prabhakar NR, Kumar GK, Nanduri J, Semenza GL. ROS signaling in systemic and cellular responses to chronic intermittent hypoxia. Antioxid. Redox Signal. 2007;9:1397–403.
    1. Hellwig-Burgel T, Rutkowski K, Metzen E, Fandrey J, Jelkmann W. Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood. 1999;94:1561–7.
    1. Richard DE, Berra E, Pouyssegur J. Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J. Biol. Chem. 2000;275:26765–71.
    1. Nishi K, Oda T, Takabuchi S, Oda S, Fukuda K, Adachi T, Semenza GL, Shingu K, Hirota K. LPS induces hypoxia-inducible factor 1 activation in macrophage-differentiated cells in a reactive oxygen species-dependent manner. Antioxid. Redox Signal. 2008;10:983–96.
    1. Kasuno K, Takabuchi S, Fukuda K, Kizaka-Kondoh S, Yodoi J, Adachi T, Semenza GL, Hirota K. Nitric oxide induces hypoxia-inducible factor 1 activation that is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling. J. Biol. Chem. 2004;279:2550–8.
    1. Hagen T, Taylor CT, Lam F, Moncada S. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science. 2003;302:1975–8.
    1. Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D, Pouyssegur J, Yaniv M, Mechta-Grigoriou F. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell. 2004;118:781–94.
    1. Cummins EP, Taylor CT. Hypoxia-responsive transcription factors. Pflugers Arch. 2005;450:363–71.
    1. Taylor CT. Interdependent roles for hypoxia inducible factor and nuclear factor-kappaB in hypoxic inflammation. J. Physiol. 2008;586:4055–9.
    1. Walmsley SR, Print C, Farahi N, Peyssonnaux C, Johnson RS, Cramer T, Sobolewski A, Condliffe AM, Cowburn AS, Johnson N, Chilvers ER. Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J. Exp. Med. 2005;201:105–15.
    1. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008;453:807–11.
    1. Walmsley SR, Cadwallader KA, Chilvers ER. The role of HIF-1alpha in myeloid cell inflammation. Trends Immunol. 2005;26:434–9.
    1. Zarember KA, Malech HL. HIF-1alpha: a master regulator of innate host defenses? J. Clin. Invest. 2005;115:1702–4.
    1. Strieter RM. Mastering innate immunity. Nat. Med. 2003;9:512–3.
    1. Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N, Johnson RS. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell. 2003;112:645–57.
    1. Cramer T, Johnson RS. A novel role for the hypoxia inducible transcription factor HIF-1alpha: critical regulation of inflammatory cell function. Cell Cycle. 2003;2:192–3.
    1. Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat. Immunol. 2005;6:1191–7.
    1. Walmsley SR, Chilvers ER, Thompson AA, Vaughan K, Marriott HM, Parker LC, Shaw G, Parmar S, Schneider M, Sabroe I, Dockrell DH, Milo M, Taylor CT, Johnson RS, Pugh CW, Ratcliffe PJ, Maxwell PH, Carmeliet P, Whyte MKB. Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice. J. Clin. Invest. 2011;121:1053–63.
    1. Kong T, Eltzschig HK, Karhausen J, Colgan SP, Shelley CS. Leukocyte adhesion during hypoxia is mediated by HIF-1-dependent induction of beta2 integrin gene expression. Proc. Natl. Acad. Sci. 2004;101:10440–5.
    1. Oda T, Hirota K, Nishi K, Takabuchi S, Oda S, Yamada H, Arai T, Fukuda K, Kita T, Adachi T, Semenza GL, Nohara R. Activation of hypoxia-inducible factor 1 during macrophage differentiation. Am. J. Physiol. Cell Physiol. 2006;291:C104–C13.
    1. Spirig R, Djafarzadeh S, Regueira T, Shaw SG, von Garnier C, Takala J, Jakob SM, Rieben R, Lepper PM. Effects of TLR agonists on the hypoxia-regulated transcription factor HIF1alpha and dendritic cell maturation under normoxic conditions. PLoS ONE. 2010;5:e0010983.
    1. Jantsch J, Chakravortty D, Turza N, Prechtel AT, Buchholz B, Gerlach RG, Volke M, Glasner J, Warnecke C, Wiesener MS, Eckardt KU, Steinkasserer A, Hensel M, Willam C. Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function. J. Immunol. 2008;180:4697–705.
    1. Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, Yen HR, Luo W, Zeller K, Shimoda L, Topalian SL, Semenza GL, Dang CV, Pardoll DM, Pan F. Control of T(H)17/T(reg) Balance by Hypoxia-Inducible Factor 1. Cell. 2011;146:772–84.
    1. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, Chi H. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 2011;208:1367–76.
    1. Woodman I. T cells: a metabolic sHIFt to turn 17. Nat. Rev. Immunol. 2011;11:503.
    1. Makino Y, Nakamura H, Ikeda E, Ohnuma K, Yamauchi K, Yabe Y, Poellinger L, Okada Y, Morimoto C, Tanaka H. Hypoxia-inducible factor regulates survival of antigen receptor-driven T cells. J. Immunol. 2003;171:6534–40.
    1. Nakamura H, Makino Y, Okamoto K, Poellinger L, Ohnuma K, Morimoto C, Tanaka H. TCR engagement increases hypoxia-inducible factor-1 alpha protein synthesis via rapamycin-sensitive pathway under hypoxic conditions in human peripheral T cells. J. Immunol. 2005;174:7592–9.
    1. Lee KS, Kim SR, Park SJ, Min KH, Lee KY, Choe YH, Park SY, Chai OH, Zhang X, Song CH, Lee YC. Mast cells can mediate vascular permeability through regulation of the PI3K-HIF-1alpha-VEGF axis. Am. J. Respir. Crit. Care Med. 2008;178:787–97.
    1. Herold S, Gabrielli NM, Vadasz I. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. Am. J. Physiol. Lung Cell Mol. Physiol. 2013;305:L665–81.
    1. Leach RM, Treacher DF. ABC of Oxygen: Oxygen transport-2. Tissue hypoxia. BMJ. 1998;317:1370–3.
    1. Textoris J, Beaufils N, Quintana G, Lassoud AB, Zieleskiewicz L, Wiramus S, Blasco V, Lesavre N, Martin C, Gabert J, Leone M. Hypoxia-inducible factor (HIF1alpha) gene expression in human shock states. Crit. Care. 2012;16:R120.
    1. Xing K, Murthy S, Liles WC, Singh JM. Clinical utility of biomarkers of endothelial activation in sepsis--a systematic review. Crit. Care. 2012;16:R7.
    1. Chen F, Kondo N, Sonobe M, Fujinaga T, Wada H, Bando T. Expression of endothelial cell-specific adhesion molecules in lungs after cardiac arrest. Interact. Cardiovasc. Thorac. Surg. 2008;7:437–40.
    1. Paulus P, Jennewein C, Zacharowski K. Biomarkers of endothelial dysfunction: can they help us deciphering systemic inflammation and sepsis? Biomarkers. 2011;16:S11–21.
    1. Peyssonnaux C, Cejudo-Martin P, Doedens A, Zinkernagel AS, Johnson RS, Nizet V. Essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis. J. Immunol. 2007;178:7516–9.
    1. Fraisl P, Aragones J, Carmeliet P. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat. Rev. Drug Discov. 2009;8:139–52.
    1. Wagner AE, Huck G, Stiehl DP, Jelkmann W, Hellwig-Burgel T. Dexamethasone impairs hypoxia-inducible factor-1 function. Biochem. Biophys. Res. Commun. 2008;372:336–40.
    1. Albini A, Tosetti F, Li VW, Noonan DM, Li WW. Cancer prevention by targeting angiogenesis. Nat. Rev. Clin. Oncol. 2012;9:498–509.
    1. Palayoor ST, Tofilon PJ, Coleman CN. Ibuprofen-mediated reduction of hypoxia-inducible factors HIF-1alpha and HIF-2alpha in prostate cancer cells. Clin. Cancer Res. 2003;9:3150–7.
    1. Lee SH, Kim MH, Han HJ. Arachidonic acid potentiates hypoxia-induced VEGF expression in mouse embryonic stem cells: involvement of Notch, Wnt, and HIF-1alpha. Am. J. Physiol Cell Physiol. 2009;297:C207–16.
    1. Wang J, Wu K, Bai F, Zhai H, Xie H, Du Y, Liang J, Han S, Chen Y, Lin T, Fan D. Celecoxib could reverse the hypoxia-induced Angiopoietin-2 upregulation in gastric cancer. Cancer Lett. 2006;242:20–7.
    1. Takabuchi S, Hirota K, Nishi K, Oda S, Oda T, Shingu K, Takabayashi A, Adachi T, Semenza GL, Fukuda K. The intravenous anesthetic propofol inhibits hypoxia-inducible factor 1 activity in an oxygen tension-dependent manner. FEBS letters. 2004;577:434–8.
    1. Yeh CH, Cho W, So EC, Chu CC, Lin MC, Wang JJ, Hsing CH. Propofol inhibits lipopolysaccharide-induced lung epithelial cell injury by reducing hypoxia-inducible factor-1alpha expression. Br. J. Anaesth. 2011;106:590–9.
    1. Brune B, Zhou J. Nitric oxide and superoxide: interference with hypoxic signaling. Cardiovasc. Res. 2007;75:275–82.
    1. Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q, Vujaskovic Z, Dewhirst MW, Li CY. Regulation of HIF-1alpha stability through S-nitrosylation. Mol. Cell. 2007;26:63–74.
    1. Pan J, Mestas J, Burdick MD, Phillips RJ, Thomas GV, Reckamp K, Belperio JA, Strieter RM. Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Mol. Can. 2006;5:56.
    1. Oda S, Oda T, Nishi K, Takabuchi S, Wakamatsu T, Tanaka T, Adachi T, Fukuda K, Semenza GL, Hirota K. Macrophage migration inhibitory factor activates hypoxia-inducible factor in a p53-dependent manner. PLoS ONE. 2008; 3:e2215.
    1. Gorlach A, Diebold I, Schini-Kerth VB, Berchner-Pfannschmidt U, Roth U, Brandes RP, Kietzmann T, Busse R. Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: Role of the p22(phox)-containing NADPH oxidase. Cir. Res. 2001;89:47–54.
    1. Fukuda R, Kelly B, Semenza GL. Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Res. 2003;63:2330–4.
    1. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat. Cell Biol. 2000;2:423–7.

Source: PubMed

3
Tilaa