Patients with adolescent idiopathic scoliosis perceive positive improvements regardless of change in the Cobb angle - Results from a randomized controlled trial comparing a 6-month Schroth intervention added to standard care and standard care alone. SOSORT 2018 Award winner

Sanja Schreiber, Eric C Parent, Doug L Hill, Douglas M Hedden, Marc J Moreau, Sarah C Southon, Sanja Schreiber, Eric C Parent, Doug L Hill, Douglas M Hedden, Marc J Moreau, Sarah C Southon

Abstract

Background: The Cobb angle is proposed as the "disease process" outcome for scoliosis research because therapies aim to correct or stop curve progression. While the Scoliosis Research Society recommends the Cobb angle as the primary outcome, the Society on Scoliosis Orthopaedic and Rehabilitation Treatment prioritises, as a general goal, patient related outcomes over Cobb angle progression.

Objective: To determine the threshold of change in the Cobb angle in adolescents with idiopathic scoliosis (AIS) who perceive improvement in a 6-months randomized controlled trial comparing a Schroth exercise intervention added to the standard of care to the standard of care alone.

Methods: This is a secondary analysis of data from a randomized controlled trial of 50 patients with AIS, with curves ranging from 10° to 45°, with or without a brace. Participants with diagnoses other than AIS, surgical candidates or patients who had scoliosis surgery were excluded. The 6-month interventions consisted of Schroth exercises added to standard-of-care (observation or bracing) with daily home exercises and weekly therapy sessions (Schroth) or standard-of-care alone (Control). The anchor method for estimating the minimal important difference (MID) in the largest Cobb angles (LC) was used. Patient-reported change in back status over the 6-month treatment period was measured using the Global Rating of Change (GRC) scale as anchor varying from - 7 ("great deal worse") to + 7 ("great deal better"). Participants were divided into two groups based on GRC scores: Improved (GRC ≥2) or Stable/Not Improved (GRC ≤1). MID was defined as the change in the LC that most accurately predicted the GRC classification as per the receiver operating characteristic curve (ROC).

Results: The average age was 13.4 ± 1.6 years and the average LC was 28.5 ± 8.8 °s. The average GRC in the control group was - 0.1 ± 1.6, compared to + 4.4 ± 2.2 in the Schroth group. The correlation between LC and GRC was adequate (r = - 0.34, p < 0.05). The MID for the LC was 1.0 °. The area under the ROC was 0.69 (0.52-0.86), suggesting a 70% chance to properly classify a patient as perceiving No Improvement/Stable or Improvement based on the change in the LC.

Conclusion: Patients undergoing Schroth treatment perceived improved status of their backs even if the Cobb angle did not improve beyond the conventionally accepted threshold of 5°. Standard of care aims to slow/stop progression while Schroth exercises aim to improve postural balance, signs and symptoms of scoliosis. Given the very small MID, perceived improvement in back status is likely due to something other than the Cobb angle. This study warrants investigating alternatives to the Cobb angle that might be more relevant to patients.

Trial registration: ClinicalTrials.gov , NCT01610908 . Retrospectively registered on April 2, 2012 (first posted on June 4, 2012 - https://ichgcp.net/clinical-trials-registry/NCT01610908 ).

Keywords: Cobb angle; Exercise; Minimal important difference (MID); Physiotherapeutic scoliosis specific exercises; Receiver operating characteristics curve; Schroth; Scoliosis; Spinal curvatures.

Conflict of interest statement

SS owns a private clinic providing Schroth exercises that opened after completing the data collection for this research. In addition, SS is an International Schroth 3D Scoliosis Therapy (ISST) Schroth Instructor.

The authors declare that they have no other competing interests.

Figures

Fig. 1
Fig. 1
Receiver Operating Characteristics (ROC) Curve representing the balance between sensitivity (true positive rate) and one minus the specificity (false positive rate) for patients reporting perceived improvements (GRC ≥2) given various cut off points for change in the largest curve

References

    1. Weinstein SL, Dolan LA, Cheng JCY, Danielsson AJ, Morcuende JA. Adolescent idiopathic scoliosis. Lancet. 2008;371:1527–1537. doi: 10.1016/S0140-6736(08)60658-3.
    1. Richards BS, Bernstein RM, D'Amato CR, Thompson GH. Standardization of criteria for adolescent idiopathic scoliosis brace studies: SRS Committee on bracing and nonoperative management. Spine. 2005;30:2068–2075. doi: 10.1097/01.brs.0000178819.90239.d0.
    1. Negrini S, Aulisa AG, Aulisa L, Circo AB, de Mauroy JC, Durmala J, Grivas TB, Knott P, Kotwicki T, Maruyama T, Minozzi S, O'Brien JP, Papadopoulos D, Rigo M, Rivard CH, Romano M, Wynne JH, Villagrasa M, Weiss H-R, Zaina F. 2011 SOSORT guidelines: Orthopaedic and Rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis. 2012;7:3. doi: 10.1186/1748-7161-7-3.
    1. Negrini S, Donzelli S, Aulisa AG, Czaprowski D, Schreiber S, de Mauroy JC, Diers H, Grivas TB, Knott P, Kotwicki T, Lebel A, Marti C, Maruyama T, O'Brien J, Price N, Parent E, Rigo M, Romano M, Stikeleather L, Wynne J, Zaina F. 2016 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis Spinal Disord. 2018;13:3. doi: 10.1186/s13013-017-0145-8.
    1. Morrissy RT, Goldsmith GS, Hall EC, Kehl D, Cowie GH. Measurement of the cobb angle on radiographs of patients who have scoliosis. Evaluation of intrinsic error. J Bone Joint Surg Am. 1990;72:320–327. doi: 10.2106/00004623-199072030-00002.
    1. Langensiepen S, Semler O, Sobottke R, Fricke O, Franklin J, Schönau E, Eysel P. Measuring procedures to determine the cobb angle in idiopathic scoliosis: a systematic review. Eur Spine J. 2013;22:2360–2371. doi: 10.1007/s00586-013-2693-9.
    1. Bridwell KH, Anderson PA, Boden SD, Vaccaro AR, Wang JC. What's new in spine surgery. J Bone Joint Surg. 2008;90:1609–1619. doi: 10.2106/JBJS.H.00418.
    1. Parent EC, Wong D, Hill D, Mahood J, Moreau M, Raso VJ, Lou E. The association between Scoliosis Research Society-22 scores and scoliosis severity changes at a clinically relevant threshold. Spine. 2010;35:315–322. doi: 10.1097/BRS.0b013e3181cabe75.
    1. Collaboration TC . Cochrane handbook for systematic reviews of interventions. 5. Chichester: Wiley; 2008.
    1. Hennes A. Schroth-method. Bad Sobernheim: Asklepios Katharina Schroth Klinik; 2011.
    1. Fusco C, Zaina F, Atanasio S, Romano M, Negrini A, Negrini S. Physical exercises in the treatment of adolescent idiopathic scoliosis: an updated systematic review. Physiother Theory Pract. 2011;27:80–114. doi: 10.3109/09593985.2010.533342.
    1. Schreiber Sanja, Parent Eric C., Khodayari Moez Elham, Hedden Douglas M., Hill Douglas L., Moreau Marc, Lou Edmond, Watkins Elise M., Southon Sarah C. Schroth Physiotherapeutic Scoliosis-Specific Exercises Added to the Standard of Care Lead to Better Cobb Angle Outcomes in Adolescents with Idiopathic Scoliosis – an Assessor and Statistician Blinded Randomized Controlled Trial. PLOS ONE. 2016;11(12):e0168746. doi: 10.1371/journal.pone.0168746.
    1. Schreiber S, Parent EC, Moez EK, Hedden DM, Hill D, Moreau MJ, Lou E, Watkins EM, Southon SC. The effect of Schroth exercises added to the standard of care on the quality of life and muscle endurance in adolescents with idiopathic scoliosis-an assessor and statistician blinded randomized controlled trial: “SOSORT 2015 Award Winner”. Scoliosis. 2015;10:24. doi: 10.1186/s13013-015-0048-5.
    1. Kwan KYH, Cheng ACS, Koh HY, Chiu AYY, Cheung KMC. Effectiveness of Schroth exercises during bracing in adolescent idiopathic scoliosis: results from a preliminary study—SOSORT award 2017 winner. Scoliosis Spinal Disord. 2017;12:1512. doi: 10.1186/s13013-017-0139-6.
    1. Kuru T, Yeldan İ, Dereli EE, Özdinçler AR, Dikici F, Çolak İ. The efficacy of three-dimensional Schroth exercises in adolescent idiopathic scoliosis: a randomised controlled clinical trial. Clin Rehabil. 2016;30:181–190. doi: 10.1177/0269215515575745.
    1. Parent E, Ghaneei M, Adeeb S, Schreiber S, Moreau MJ, Hedden D, Hill DL, Southon S. Effects of schroth exercises added to standard care in adolescents with idiopathic scoliosis (Ais) on markerless surface topography asymmetry measurements – a randomized controlled trial (RCT) 2016. p. 70.
    1. Jacobson NS, Follette WC, Revenstorf D. Psychotherapy outcome research: methods for reporting variability and evaluating clinical significance. Behav Ther. 1984;15:336–352. doi: 10.1016/S0005-7894(84)80002-7.
    1. Bauer S, Lambert MJ, Nielsen SL. Clinical significance methods: a comparison of statistical techniques. J Pers Assess. 2004;82:60–70. doi: 10.1207/s15327752jpa8201_11.
    1. Revicki D, Hays R, Cella D, Sloan J. Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. J Clin Epidemiol. 2008;61:102–109. doi: 10.1016/j.jclinepi.2007.03.012.
    1. Schreiber S, Parent EC, Hedden DM, Moreau M, Hill D, Lou E. Effect of Schroth exercises on curve characteristics and clinical outcomes in adolescent idiopathic scoliosis: protocol for a multicentre randomised controlled trial. J Phys. 2014;60:234.
    1. Jaeschke R, Guyatt G, Shannon H, Walter S, Cook D, Heddle N. Basic statistics for clinicians: 3. Assessing the effects of treatment: measures of association. CMAJ. 1995;152:351–357.
    1. Guyatt GH, Osoba D, Wu AW, Wyrwich KW, Norman GR. Clinical significance consensus meeting group: methods to explain the clinical significance of health status measures. Mayo Clin Proc. 2002;77:371–383. doi: 10.4065/77.4.371.
    1. The Scoliosis Research Society Brace Manual. . Accessed 20 June 2019.
    1. Zhang J, Lou E, Shi X, Wang Y, Hill DL, Raso JV, Le LH, Lv L. A computer-aided cobb angle measurement method and its reliability. J Spinal Disord Tech. 2010;23:383–387. doi: 10.1097/BSD.0b013e3181bb9a3c.
    1. Jaeschke R, Singer J, Guyatt GH. Measurement of health status. Ascertaining the minimal clinically important difference. Control Clin Trials. 1989;10:407–415. doi: 10.1016/0197-2456(89)90005-6.
    1. Cella D, Hahn EA, Dineen K. Meaningful change in cancer-specific quality of life scores: differences between improvement and worsening. Qual Life Res. 2002;11:207–221. doi: 10.1023/A:1015276414526.
    1. Kamper SJ, Maher CG, Mackay G. Global rating of change scales: a review of strengths and weaknesses and considerations for design. J Man Manip Ther. 2009;17:163–170. doi: 10.1179/jmt.2009.17.3.163.
    1. Jokovic A, Locker D, Stephens M, Kenny D, Tompson B, Guyatt G. Validity and reliability of a questionnaire for measuring child oral-health-related quality of life. J Dent Res. 2002;81:459–463. doi: 10.1177/154405910208100705.
    1. Guyatt GH, Juniper EF, Griffith LE, Feeny DH, Ferrie PJ. Children and adult perceptions of childhood asthma. Pediatrics. 1997;99:165–168. doi: 10.1542/peds.99.2.165.
    1. Musselman KE. Clinical significance testing in rehabilitation research: what, why, and how? Phys Ther Rev. 2007;12:287–296. doi: 10.1179/108331907X223128.
    1. Cella D, Eton DT, Lai J-S, Peterman AH, Merkel DE. Combining anchor and distribution-based methods to derive minimal clinically important differences on the functional assessment of Cancer therapy (FACT) anemia and fatigue scales. J Pain Symptom Manag. 2002;24:547–561. doi: 10.1016/S0885-3924(02)00529-8.
    1. Portney LG, Watkins MP. Foundations of clinical research: applications to practice. Upper Saddle River: Prentice Hall; 2009.
    1. Linden A. Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. J Eval Clin Pract. 2006;12:132–139. doi: 10.1111/j.1365-2753.2005.00598.x.
    1. Upasani VV, Caltoum C, Petcharaporn M, Bastrom TP, Pawelek JB, Betz RR, Clements DH, Lenke LG, Lowe TG, Newton PO. Adolescent idiopathic scoliosis patients report increased pain at five years compared with two years after surgical treatment. Spine. 2008;33:1107–1112. doi: 10.1097/BRS.0b013e31816f2849.
    1. Danielsson AJ, Nachemson AL. Back pain and function 22 years after brace treatment for adolescent idiopathic scoliosis: a case-control study-part I. Spine. 2003;28:2078–2085. doi: 10.1097/01.BRS.0000084268.77805.6F.
    1. Danielsson AJ, Nachemson AL. Back pain and function 23 years after fusion for adolescent idiopathic scoliosis: a case-control study-part II. Spine. 2003;28:E373–E383. doi: 10.1097/01.BRS.0000084267.41183.75.
    1. Sato T, Hirano T, Ito T, Morita O, Kikuchi R, Endo N, Tanabe N. Back pain in adolescents with idiopathic scoliosis: epidemiological study for 43,630 pupils in Niigata City, Japan. Eur Spine J. 2011;20:274–279. doi: 10.1007/s00586-010-1657-6.
    1. Kahanovitz N, Snow B, Pinter I. The comparative results of psychologic testing in scoliosis patients treated with electrical stimulation or bracing. Spine. 1984;9:442–444. doi: 10.1097/00007632-198407000-00002.
    1. Payne WK, III, Ogilvie JW, Resnick MD, Kane RL, Transfeldt EE, Blum RW. Does scoliosis have a psychological impact and does gender make a difference? Spine. 1997;22:1380. doi: 10.1097/00007632-199706150-00017.
    1. Sanders AE, Andras LM, Iantorno SE, Hamilton A, Choi PD, Skaggs DL. Clinically significant psychological and emotional distress in 32% of adolescent idiopathic scoliosis patients*. Spine Deform. 2018;6:435–440. doi: 10.1016/j.jspd.2017.12.014.
    1. Parent EC, Dang R, Hill D, Mahood J, Moreau M, Raso J, Lou E. Score distribution of the scoliosis research society-22 questionnaire in subgroups of patients of all ages with idiopathic scoliosis. Spine. 2010;35:568–577. doi: 10.1097/BRS.0b013e3181b9c9c0.
    1. Schreiber S, Parent EC, Moez EK, Hedden DM, Hill D, Moreau MJ, Lou E, Watkins EM, Southon SC. The effect of Schroth exercises added to the standard of care on the quality of life and muscle endurance in adolescents with idiopathic scoliosis-an assessor and statistician blinded randomized controlled trial: “SOSORT 2015 Award Winner”. Scoliosis. 2015;10:1–12. doi: 10.1186/s13013-015-0048-5.
    1. Negrini S, Grivas TB, Kotwicki T, Maruyama T, Rigo M, Weiss H-R. Members of the scientific society on scoliosis Orthopaedic and rehabilitation treatment (SOSORT): why do we treat adolescent idiopathic scoliosis? What we want to obtain and to avoid for our patients. SOSORT 2005 consensus paper. Scoliosis. 2006;1:4. doi: 10.1186/1748-7161-1-4.
    1. For Parents | Scoliosis ..
    1. Negrini S, Hresko TM, O'Brien JP, Price N. Recommendations for research studies on treatment of idiopathic scoliosis: Consensus 2014 between SOSORT and SRS non–operative management committee. Scoliosis. 2015;10:1. doi: 10.1186/s13013-014-0026-3.
    1. Parent EC, Hill D, Mahood J, Moreau M, Raso J, Lou E. Discriminative and predictive validity of the Scoliosis Research Society-22 questionnaire in management and curve-severity subgroups of adolescents with idiopathic scoliosis. Spine. 2009;34:2450–2457. doi: 10.1097/BRS.0b013e3181af28bf.
    1. Asher M, Min Lai S, Burton D, Manna B. Discrimination validity of the scoliosis research society-22 patient questionnaire: relationship to idiopathic scoliosis curve pattern and curve size. Spine. 2003;28:74–78. doi: 10.1097/00007632-200301010-00017.
    1. Knott P, Pappo E, Cameron M, deMauroy JC, Rivard C, Kotwicki T, Zaina F, Wynne J, Stikeleather L, Bettany-Saltikov J, Grivas TB, Durmala J, Maruyama T, Negrini S, O'Brien JP, Rigo M. SOSORT 2012 consensus paper: reducing x-ray exposure in pediatric patients with scoliosis. Scoliosis. 2014;9:1330. doi: 10.1186/1748-7161-9-4.
    1. Furlan AD, Malmivaara A, Chou R, Maher CG, Deyo RA, Schoene M, Bronfort G, van Tulder MW. 2015 updated method guideline for systematic reviews in the Cochrane Back and neck group. Spine. 2015;40:1660–1673. doi: 10.1097/BRS.0000000000001061.

Source: PubMed

3
Tilaa