Validity of the Polar V800 heart rate monitor to measure RR intervals at rest

David Giles, Nick Draper, William Neil, David Giles, Nick Draper, William Neil

Abstract

Purpose: To assess the validity of RR intervals and short-term heart rate variability (HRV) data obtained from the Polar V800 heart rate monitor, in comparison to an electrocardiograph (ECG).

Method: Twenty participants completed an active orthostatic test using the V800 and ECG. An improved method for the identification and correction of RR intervals was employed prior to HRV analysis. Agreement of the data was assessed using intra-class correlation coefficients (ICC), Bland-Altman limits of agreement (LoA), and effect size (ES).

Results: A small number of errors were detected between ECG and Polar RR signal, with a combined error rate of 0.086 %. The RR intervals from ECG to V800 were significantly different, but with small ES for both supine corrected and standing corrected data (ES <0.001). The bias (LoA) were 0.06 (-4.33 to 4.45 ms) and 0.59 (-1.70 to 2.87 ms) for supine and standing intervals, respectively. The ICC was >0.999 for both supine and standing corrected intervals. When analysed with the same HRV software no significant differences were observed in any HRV parameters, for either supine or standing; the data displayed small bias and tight LoA, strong ICC (>0.99) and small ES (≤0.029).

Conclusions: The V800 improves over previous Polar models, with narrower LoA, stronger ICC and smaller ES for both the RR intervals and HRV parameters. The findings support the validity of the Polar V800 and its ability to produce RR interval recordings consistent with an ECG. In addition, HRV parameters derived from these recordings are also highly comparable.

Keywords: Frequency domain analysis; Heart rate variability; Non-linear analysis; Polar V800; Time domain analysis.

Figures

Fig. 1
Fig. 1
Bland-Altman plots for supine uncorrected (a) and corrected (b) and standing uncorrected (c) and corrected (d) ECG and Polar V800 HRM RR interval data

References

    1. Achten J, Jeukendrup AE. Heart rate monitoring. Sports Med. 2003;33:517–538. doi: 10.2165/00007256-200333070-00004.
    1. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger A, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213:220–222. doi: 10.1126/science.6166045.
    1. Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26:217–238. doi: 10.2165/00007256-199826040-00002.
    1. Bland JM, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327:307–310. doi: 10.1016/S0140-6736(86)90837-8.
    1. Brennan M, Palaniswami M, Kamen P. Do existing measures of poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng. 2001;48:1342–1347. doi: 10.1109/10.959330.
    1. Cohen J. Statistical power analysis for the behavioral sciences. Oxford: In. Academic press; 2013. pp. 285–289.
    1. Dash P. Electrocardiogram monitoring. Indian J Anaesth. 2002;46:251–260.
    1. Fouad FM, Tarazi RC, Ferrario CM, Fighaly S, Alicandri C. Assessment of parasympathetic control of heart rate by a noninvasive method. Am J Physiol Heart Circ Physiol. 1984;246:H838–H842.
    1. Gamelin FX, Berthoin S, Bosquet L. Validity of the polar S810 heart rate monitor to measure Rr intervals at rest. Med Sci Sports Exerc. 2006;38:887. doi: 10.1249/01.mss.0000218135.79476.9c.
    1. Gamelin F, Baquet G, Berthoin S, Bosquet L. Validity of the polar S810 to measure Rr intervals in children. Int J Sports Med. 2008;29:134–138. doi: 10.1055/s-2007-964995.
    1. Karim N, Hasan JA, Ali SS. Heart rate variability—a review. J Basic Appl Sci. 2011;7:71–77.
    1. Kingsley M, Lewis MJ, Marson R. Comparison of polar 810 s and an ambulatory ecg system for Rr interval measurement during progressive exercise. Int J Sports Med. 2004;26:39–44. doi: 10.1055/s-2004-817878.
    1. Makivić B, Nikić MD, Willis MS, Education P, Parovića B. Heart rate variability (Hrv) as a tool for diagnostic and monitoring performance in sport and physical activities. J Exerc Physiol Online. 2013;16:103–131.
    1. Mateo M, Blasco-Lafarga C, Martínez-Navarro I, Guzmán JF, Zabala M. Heart rate variability and pre-competitive anxiety in bmx discipline. Eur J Appl Physiol. 2012;112:113–123. doi: 10.1007/s00421-011-1962-8.
    1. Morales J, Garcia V, García-Massó X, Salvá P, Escobar R. The use of heart rate variability in assessing precompetitive stress in high-standard judo athletes. Int J Sports Med. 2013;34:144–151.
    1. Nunan D, Jakovljevic DG, Donovan G, Hodges LD, Sandercock GR, Brodie DA. Levels of agreement for Rr intervals and short-term heart rate variability obtained from the polar S810 and an alternative system. Eur J Appl Physiol. 2008;103:529–537. doi: 10.1007/s00421-008-0742-6.
    1. Nunan D, Donovan G, Jakovljevic DG, Hodges LD, Sandercock G, Brodie DA. Validity and reliability of short-term heart-rate variability from the polar S810. Med Sci Sports Exerc. 2009;41:243–250. doi: 10.1249/MSS.0b013e318184a4b1.
    1. Porto LGG, Junqueira J. Comparison of time-domain short-term heart interval variability analysis using a wrist-worn heart rate monitor and the conventional electrocardiogram. Pacing Clin Electrophysiol. 2009;32:43–51. doi: 10.1111/j.1540-8159.2009.02175.x.
    1. Pöyhönen M, Syväoja S, Hartikainen J, Ruokonen E, Takala J. The effect of carbon dioxide, respiratory rate and tidal volume on human heart rate variability. Acta Anaesthesiol Scand. 2004;48:93–101. doi: 10.1111/j.1399-6576.2004.00272.x.
    1. Quintana DS, Heathers JA, Kemp AH. On the validity of using the polar Rs800 heart rate monitor for heart rate variability research. Eur J Appl Physiol. 2012;112:4179–4180. doi: 10.1007/s00421-012-2453-2.
    1. Radespiel-Tröger M, Rauh R, Mahlke C, Gottschalk T, Mück-Weymann M. Agreement of two different methods for measurement of heart rate variability. Clin Auton Res. 2003;13:99–102. doi: 10.1007/s10286-003-0085-7.
    1. Sandercock G, Bromley P, Brodie D. Reliability of three commercially available heart rate variability instruments using short-term (5-min) recordings. Clin Physiol Funct Imaging. 2004;24:359–367. doi: 10.1111/j.1475-097X.2004.00584.x.
    1. Seals DR, Chase PB. Influence of physical training on heart rate variability and baroreflex circulatory control. J Appl Physiol. 1989;66:1886–1895. doi: 10.1063/1.344346.
    1. Song H-S, Lehrer PM. The effects of specific respiratory rates on heart rate and heart rate variability. Appl Psychophysiol Biofeedback. 2003;28:13–23. doi: 10.1023/A:1022312815649.
    1. Spallone V, Ziegler D, Freeman R, Bernardi L, Frontoni S, Pop-Busui R, Stevens M, Kempler P, Hilsted J, Tesfaye S. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabet Metabol Res Rev. 2011;27:639–653. doi: 10.1002/dmrr.1239.
    1. Tarvainen MP, Niskanen J-P, Lipponen JA, Ranta-Aho PO, Karjalainen PA. Kubios hrv-heart rate variability analysis software. Comput Methods Progr Biomed. 2014;113:210–220. doi: 10.1016/j.cmpb.2013.07.024.
    1. Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol. 2010;141:122–131. doi: 10.1016/j.ijcard.2009.09.543.
    1. Thayer JF, Åhs F, Fredrikson M, Sollers JJ, Wager TD. A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev. 2012;36:747–756. doi: 10.1016/j.neubiorev.2011.11.009.
    1. Thomas JR, Nelson JK, Silverman SJ (2010) Research methods in physical activity. In: Human kinetics, Champaign, IL, pp 115–116
    1. Vanderlei L, Silva R, Pastre C, Azevedo FMd, Godoy M. Comparison of the polar s810i monitor and the ecg for the analysis of heart rate variability in the time and frequency domains. Braz J Med Biol Res. 2008;41:854–859. doi: 10.1590/S0100-879X2008005000039.
    1. Wallén MB, Hasson D, Theorell T, Canlon B, Osika W. Possibilities and limitations of the polar Rs800 in measuring heart rate variability at rest. Eur J Appl Physiol. 2012;112:1153–1165. doi: 10.1007/s00421-011-2079-9.
    1. Weippert M, Kumar M, Kreuzfeld S, Arndt D, Rieger A, Stoll R. Comparison of three mobile devices for measuring R-R intervals and heart rate variability: polar S810i, suunto T6 and an ambulatory ecg system. Eur J Appl Physiol. 2010;109:779–786. doi: 10.1007/s00421-010-1415-9.
    1. Weippert M, Behrens M, Rieger A, Behrens K. Sample entropy and traditional measures of heart rate dynamics reveal different modes of cardiovascular control during low intensity exercise. Entropy. 2014;16:5698–5711. doi: 10.3390/e16115698.
    1. Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the sem. J Strength Cond Res. 2005;19:231–240.
    1. Yi H-T, Hsieh Y-C, Wu T-J, Huang J-L, Lin W-W, Liang K-W, Su C-S, Tsai W-J, Wang K-Y. Heart rate variability parameters and ventricular arrhythmia correlate with pulmonary arterial pressure in adult patients with idiopathic pulmonary arterial hypertension. Heart Lung J Acute Crit Care. 2014;43:534–540. doi: 10.1016/j.hrtlng.2014.05.010.

Source: PubMed

3
Tilaa