Visual and quantitative evaluation of [18F]FES and [18F]FDHT PET in patients with metastatic breast cancer: an interobserver variability study

Lemonitsa H Mammatas, Clasina M Venema, Carolina P Schröder, Henrica C W de Vet, Michel van Kruchten, Andor W J M Glaudemans, Maqsood M Yaqub, Henk M W Verheul, Epie Boven, Bert van der Vegt, Erik F J de Vries, Elisabeth G E de Vries, Otto S Hoekstra, Geke A P Hospers, C Willemien Menke-van der Houven van Oordt, Lemonitsa H Mammatas, Clasina M Venema, Carolina P Schröder, Henrica C W de Vet, Michel van Kruchten, Andor W J M Glaudemans, Maqsood M Yaqub, Henk M W Verheul, Epie Boven, Bert van der Vegt, Erik F J de Vries, Elisabeth G E de Vries, Otto S Hoekstra, Geke A P Hospers, C Willemien Menke-van der Houven van Oordt

Abstract

Purpose: Correct identification of tumour receptor status is important for treatment decisions in breast cancer. [18F]FES PET and [18F]FDHT PET allow non-invasive assessment of the oestrogen (ER) and androgen receptor (AR) status of individual lesions within a patient. Despite standardised analysis techniques, interobserver variability can significantly affect the interpretation of PET results and thus clinical applicability. The purpose of this study was to determine visual and quantitative interobserver variability of [18F]FES PET and [18F]FDHT PET interpretation in patients with metastatic breast cancer.

Methods: In this prospective, two-centre study, patients with ER-positive metastatic breast cancer underwent both [18F]FES and [18F]FDHT PET/CT. In total, 120 lesions were identified in 10 patients with either conventional imaging (bone scan or lesions > 1 cm on high-resolution CT, n = 69) or only with [18F]FES and [18F]FDHT PET (n = 51). All lesions were scored visually and quantitatively by two independent observers. A visually PET-positive lesion was defined as uptake above background. For quantification, we used standardised uptake values (SUV): SUVmax, SUVpeak and SUVmean.

Results: Visual analysis showed an absolute positive and negative interobserver agreement for [18F]FES PET of 84% and 83%, respectively (kappa = 0.67, 95% CI 0.48-0.87), and 49% and 74% for [18F]FDHT PET, respectively (kappa = 0.23, 95% CI - 0.04-0.49). Intraclass correlation coefficients (ICC) for quantification of SUVmax, SUVpeak and SUVmean were 0.98 (95% CI 0.96-0.98), 0.97 (95% CI 0.96-0.98) and 0.89 (95% CI 0.83-0.92) for [18F]FES, and 0.78 (95% CI 0.66-0.85), 0.76 (95% CI 0.63-0.84) and 0.75 (95% CI 0.62-0.84) for [18F]FDHT, respectively.

Conclusion: Visual and quantitative evaluation of [18F]FES PET showed high interobserver agreement. These results support the use of [18F]FES PET in clinical practice. In contrast, visual agreement for [18F]FDHT PET was relatively low due to low tumour-background ratios, but quantitative agreement was good. This underscores the relevance of quantitative analysis of [18F]FDHT PET in breast cancer.

Trial registration: ClinicalTrials.gov, NCT01988324. Registered 20 November 2013, https://ichgcp.net/clinical-trials-registry/NCT01988324?term=FDHT+PET&draw=1&rank=2.

Keywords: Androgen receptor; Breast cancer; FDHT PET; FES PET; Interobserver variability; Oestrogen receptor.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Tumour lesions detected with conventional imaging, [18F]FES and [18F]FDHT PET
Fig. 2
Fig. 2
The difference in tumour-background ratio between [18F]FES and [18F]FDHT PET shown visually (a) and quantitatively (mean ± SD) for bone and lymph node lesions (b). The arrows in a show a bone lesion in the right os ilium visible on [18F]FES PET which is only subtly visible on [18F]FDHT PET. Note, there is physiological tracer uptake of [18F]FES in the liver, gallbladder, intestine, bladder and for [18F]FDHT also in the bloodpool
Fig. 3
Fig. 3
Intraclass correlation coefficients for all quantified tumour lesions on [18F]FES (n = 94) using SUVmax, SUVpeak and SUVmean (a, b and c) and [18F]FDHT PET (n = 95) (d, e and f). Note: not quantifiable lesions by one or both of the observers were excluded as a result of overlap with adjacent organs with high physiological tracer uptake
Fig. 4
Fig. 4
Bland Altman plots showing the % differences in SUVmax, SUVpeak and SUVmean between observers for lesions visible on [18F]FES PET (a, b, c) or only visible on conventional imaging (d, e, f). The dashed lines represent the mean difference between observers ± 95% limits of agreement (LOA95%)
Fig. 5
Fig. 5
Bland Altman plots showing the % differences in SUVmax, SUVpeak and SUVmean between observers for lesions visible on [18F]FDHT PET (a, b, c) or only visible on conventional imaging (d, e, f)

References

    1. Blamey RW, Hornmark-Stenstam B, Ball G, Blichert-Toft M, Cataliotti L, Fourquet A, et al. ONCOPOOL - a European database for 16,944 cases of breast cancer. Eur J Cancer. 2010;46:56–71. doi: 10.1016/j.ejca.2009.09.009.
    1. Yamashita H, Yando Y, Nishio M, Zhang Z, Hamaguchi M, Mita K, et al. Immunohistochemical evaluation of hormone receptor status for predicting response to endocrine therapy in metastatic breast cancer. Breast Cancer. 2006;13:74–83. doi: 10.2325/jbcs.13.74.
    1. Collins LC, Cole KS, Marotti JD, Hu R, Schnitt SJ, Tamimi RM. Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses’ Health Study. Mod Pathol. 2011;24:924–931. doi: 10.1038/modpathol.2011.54.
    1. Krop I, Colleoni M, Traina T, Holmes F, Estevez L, et al. Results from a randomized placebo-controlled phase 2 trial evaluating exemestane ± enzalutamide in patients with hormone receptor–positive breast cancer. Abstract GS4-07. San Antonio Breast Cancer Symposium. San Antonio, Texas; 2017.
    1. Gucalp A, Tolaney S, Isakoff SJ, Ingle JN, Liu MC, Carey LA, et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clin Cancer Res. 2013;19:5505–5512. doi: 10.1158/1078-0432.CCR-12-3327.
    1. Traina TA, Yardley DA, Schwartzberg LS, O'Shaughnessy J, Cortes J, Awada A, et al. Overall survival (OS) in patients (Pts) with diagnostic positive (Dx+) breast cancer: subgroup analysis from a phase 2 study of enzalutamide (ENZA), an androgen receptor (AR) inhibitor, in AR+ triple-negative breast cancer (TNBC) treated with 0-1 prior lines of therapy. J Clin Oncol. 2017;35:1089. doi: 10.1200/JCO.2017.35.15_suppl.1089.
    1. Youk JH, Kim EK, Kim MJ, Lee JY, Oh KK. Missed breast cancers at US-guided core needle biopsy: how to reduce them. Radiographics. 2007;27:79–94. doi: 10.1148/rg.271065029.
    1. Venema CM, Mammatas LH, Schroder CP, van Kruchten M, Apollonio G, Glaudemans A, et al. Androgen and estrogen receptor imaging in metastatic breast cancer patients as a surrogate for tissue biopsies. J Nucl Med. 2017;58:1906–1912. doi: 10.2967/jnumed.117.193649.
    1. van Kruchten M, de Vries EG, Brown M, de Vries EF, Glaudemans AW, Dierckx RA, et al. PET imaging of oestrogen receptors in patients with breast cancer. Lancet Oncol. 2013;14:e465–e475. doi: 10.1016/S1470-2045(13)70292-4.
    1. Chae SY, Ahn SH, Kim SB, Han S, Lee SH, Oh SJ, et al. Diagnostic accuracy and safety of 16alpha-[(18)F]fluoro-17beta-oestradiol PET-CT for the assessment of oestrogen receptor status in recurrent or metastatic lesions in patients with breast cancer: a prospective cohort study. Lancet Oncol. 2019;20:546–555. doi: 10.1016/S1470-2045(18)30936-7.
    1. van Kruchten M, Glaudemans AW, de Vries EF, Beets-Tan RG, Schroder CP, Dierckx RA, et al. PET imaging of estrogen receptors as a diagnostic tool for breast cancer patients presenting with a clinical dilemma. J Nucl Med. 2012;53:182–190. doi: 10.2967/jnumed.111.092734.
    1. van Kruchten M, de Vries EG, Glaudemans AW, van Lanschot MC, van Faassen M, Kema IP, et al. Measuring residual estrogen receptor availability during fulvestrant therapy in patients with metastatic breast cancer. Cancer Discov. 2015;5:72–81. doi: 10.1158/-14-0697.
    1. Scher HI, Beer TM, Higano CS, Anand A, Taplin ME, Efstathiou E, et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet. 2010;375:1437–1446. doi: 10.1016/S0140-6736(10)60172-9.
    1. Kurland BF, Peterson LM, Lee JH, Schubert EK, Currin ER, Link JM, et al. Estrogen receptor binding (18F-FES PET) and glycolytic activity (18F-FDG PET) predict progression-free survival on endocrine therapy in patients with ER+ breast cancer. Clin Cancer Res. 2017;23:407–415. doi: 10.1158/1078-0432.CCR-16-0362.
    1. Liu A, Dence CS, Welch MJ, Katzenellenbogen JA. Fluorine-18-labeled androgens: radiochemical synthesis and tissue distribution studies on six fluorine-substituted androgens, potential imaging agents for prostatic cancer. J Nucl Med. 1992;33:724–734.
    1. Römer J, Steinbach J, Kasch H. Studies on the synthesis of 16α-[18F] fluoroestradiol. Appl Rad Isotop. 1996;47:395–399. doi: 10.1016/0969-8043(95)00330-4.
    1. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–354. doi: 10.1007/s00259-014-2961-x.
    1. Jansen BHE, Kramer GM, Cysouw MCF, Yaqub MM, de Keizer B, Lavalaye J, et al. Healthy tissue uptake of (68)Ga-prostate specific membrane antigen (PSMA), (18)F-DCFPyL, (18)F-fluoromethylcholine (FCH) and (18)F-dihydrotestosterone (FDHT). J Nucl Med. 2019. 10.2967/jnumed.118.222505.
    1. de Vet HC, Mokkink LB, Terwee CB, Hoekstra OS, Knol DL. Clinicians are right not to like Cohen’s kappa. BMJ. 2013;346:f2125. doi: 10.1136/bmj.f2125.
    1. Landis JR, Koch GG. An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics. 1977:363–74.
    1. Portney LG, Watkins MP. Foundations of clinical research: applications to practice: Pearson/Prentice Hall Upper Saddle River, NJ; 2009.
    1. Sawicki LM, Grueneisen J, Schaarschmidt BM, Buchbender C, Nagarajah J, Umutlu L, et al. Evaluation of 18 F-FDG PET/MRI, 18 F-FDG PET/CT, MRI, and CT in whole-body staging of recurrent breast cancer. Eur J Radiol. 2016;85:459–465. doi: 10.1016/j.ejrad.2015.12.010.
    1. van der Hoeven JJ, Hoekstra OS, Comans EF, Pijpers R, Boom RP, van Geldere D, et al. Determinants of diagnostic performance of [F-18] fluorodeoxyglucose positron emission tomography for axillary staging in breast cancer. Ann Surg. 2002;236:619. doi: 10.1097/00000658-200211000-00012.
    1. Shackleton M, Yuen K, Little AF, Schlicht S, McLachlan SA. Reliability of X-rays and bone scans for the assessment of changes in skeletal metastases from breast cancer. Intern Med J. 2004;34:615–620. doi: 10.1111/j.1445-5994.2004.00637.x.
    1. Gutzeit A, Doert A, Froehlich JM, Eckhardt BP, Meili A, Scherr P, et al. Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skeletal Radiol. 2010;39:333–343. doi: 10.1007/s00256-009-0789-4.
    1. Jacene HA, Leboulleux S, Baba S, Chatzifotiadis D, Goudarzi B, Teytelbaum O, et al. Assessment of interobserver reproducibility in quantitative 18F-FDG PET and CT measurements of tumor response to therapy. J Nucl Med. 2009;50:1760–1769. doi: 10.2967/jnumed.109.063321.
    1. Fox JJ, Autran-Blanc E, Morris MJ, Gavane S, Nehmeh S, Van Nuffel A, et al. Practical approach for comparative analysis of multilesion molecular imaging using a semiautomated program for PET/CT. J Nucl Med. 2011;52:1727–1732. doi: 10.2967/jnumed.111.089326.
    1. Vargas HA, Wassberg C, Fox JJ, Wibmer A, Goldman DA, Kuk D, et al. Bone metastases in castration-resistant prostate cancer: associations between morphologic CT patterns, glycolytic activity, and androgen receptor expression on PET and overall survival. Radiology. 2014;271:220–229. doi: 10.1148/radiol.13130625.
    1. Nienhuis HH, van Kruchten M, Elias SG, Glaudemans A, de Vries EFJ, Bongaerts AHH, et al. (18)F-fluoroestradiol tumor uptake is heterogeneous and influenced by site of metastasis in breast cancer patients. J Nucl Med. 2018;59:1212–1218. doi: 10.2967/jnumed.117.198846.
    1. Dehdashti F, Mortimer JE, Trinkaus K, Naughton MJ, Ellis M, Katzenellenbogen JA, et al. PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer. Breast Cancer Res Treat. 2009;113:509–517. doi: 10.1007/s10549-008-9953-0.
    1. Mortimer JE, Dehdashti F, Siegel BA, Trinkaus K, Katzenellenbogen JA, Welch MJ. Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol. 2001;19:2797–2803. doi: 10.1200/JCO.2001.19.11.2797.
    1. Amir E, Miller N, Geddie W, Freedman O, Kassam F, Simmons C, et al. Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J Clin Oncol. 2012;30:587–592. doi: 10.1200/JCO.2010.33.5232.
    1. Groheux D, Giacchetti S, Moretti JL, Porcher R, Espie M, Lehmann-Che J, et al. Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging. 2011;38:426–435. doi: 10.1007/s00259-010-1640-9.
    1. Mammatas LH, Verheul HM, Hendrikse NH, Yaqub M, Lammertsma AA, Menke-van der Houven van Oordt CW. Molecular imaging of targeted therapies with positron emission tomography: the visualization of personalized cancer care. Cell Oncol (Dordr) 2015;38:49–64. doi: 10.1007/s13402-014-0194-4.

Source: PubMed

3
Tilaa