Effects of Photobiomodulation Therapy Combined with Static Magnetic Field in Severe COVID-19 Patients Requiring Intubation: A Pragmatic Randomized Placebo-Controlled Trial

Thiago De Marchi, Fabiano Frâncio, João Vitor Ferlito, Renata Weigert, Cristiane de Oliveira, Ana Paula Merlo, Délcio Luis Pandini, Bolivar Antônio Pasqual-Júnior, Daniela Giovanella, Shaiane Silva Tomazoni, Ernesto Cesar Leal-Junior, Thiago De Marchi, Fabiano Frâncio, João Vitor Ferlito, Renata Weigert, Cristiane de Oliveira, Ana Paula Merlo, Délcio Luis Pandini, Bolivar Antônio Pasqual-Júnior, Daniela Giovanella, Shaiane Silva Tomazoni, Ernesto Cesar Leal-Junior

Abstract

Purpose: We aimed to investigate the effects of photobiomodulation therapy combined with static magnetic field (PBMT-sMF) on the length of intensive care unit (ICU) stay and mortality rate of severe COVID-19 patients requiring invasive mechanical ventilation and assess its role in preserving respiratory muscles and modulating inflammatory processes.

Patients and methods: We conducted a prospectively registered, triple-blinded, randomized, placebo-controlled trial of PBMT-sMF in severe COVID-19 ICU patients requiring invasive mechanical ventilation. Patients were randomly assigned to receive either PBMT-sMF or a placebo daily throughout their ICU stay. The primary outcome was length of ICU stay, defined by either discharge or death. The secondary outcomes were survival rate, diaphragm muscle function, and the changes in blood parameters, ventilatory parameters, and arterial blood gases.

Results: Thirty patients were included and equally randomized into the two groups. There were no significant differences in the length of ICU stay (mean difference, MD = -6.80; 95% CI = -18.71 to 5.11) between the groups. Among the secondary outcomes, significant differences were observed in diaphragm thickness, fraction of inspired oxygen, partial pressure of oxygen/fraction of inspired oxygen ratio, C-reactive protein levels, lymphocyte count, and hemoglobin (p < 0.05).

Conclusion: Among severe COVID-19 patients requiring invasive mechanical ventilation, the length of ICU stay was not significantly different between the PBMT-sMF and placebo groups. In contrast, PBMT-sMF was significantly associated with reduced diaphragm atrophy, improved ventilatory parameters and lymphocyte count, and decreased C-reactive protein levels and hemoglobin count.

Trial registration number clinical trialsgov: NCT04386694.

Keywords: COVID-19; intensive care unit; mechanical ventilation; photobiomodulation; respiratory muscles; ventilatory parameters.

Conflict of interest statement

Professor Ernesto Cesar Pinto Leal-Junior receives research support from Multi Radiance Medical (Solon, OH, USA), a laser device manufacturer. Professor Ernesto Cesar Pinto Leal-Junior also has a patent Laser therapy for patients requiring mechanical ventilation pending to Multi Radiance Medical. Shaiane Silva Tomazoni has a personal relationship with Ernesto Cesar Pinto Leal-Junior. Multi Radiance Medical had no role in the planning, conducting, and analysis of the data. The remaining authors declare that they have no support from any organizations for the submitted work; no financial relationships with any organizations that might have an interest in the submitted work in the past three years; and no other relationships or activities that could appear to have influenced the submitted work.

© 2021 De Marchi et al.

Figures

Figure 1
Figure 1
PBMT-sMF device. Figure 1 shows the device used to applied the PBMT-sMF and placebo. A cluster probe with 20 diodes containing 4 diodes of 905 nm, 8 diodes of 633 nm and 8 diodes of 850 nm was used: A - Red LEDs; B - Infrared LEDs; C - Super-pulsed laser; D - Magnetic field.
Figure 2
Figure 2
Irradiation of interventions. (A) shows the sites where PBMT-sMF and placebo were irradiated. The interventions were irradiated at six sites in the lower thorax/upper abdominal cavity and two sites in the neck area. (B) shows the full description of the parameters of PBMT-sMF applied in the treatment. This figure is owned by the authors.
Figure 3
Figure 3
CONSORT flow diagram of the study. Figure 3 shows the flow diagram of the study including enrollment, randomization, intervention allocation, follow-up and data analysis of the two groups.

References

    1. World Health Organization (WHO). Report of the WHO-China Joint Mission on coronavirus disease 2019 (COVID-19). Available from . Accessed May25, 2020.
    1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-5
    1. Israelsen SB, Kristiansen KT, Hindsberger B, et al. Characteristics of patients with COVID-19 pneumonia at Hvidovre Hospital, March-April 2020. Dan Med J. 2020;67(6):A05200313.
    1. Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369:m1966. doi:10.1136/bmj.m1966
    1. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069. doi:10.1001/jama.2020.1585
    1. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934–943. doi:10.1001/jamainternmed.2020.0994
    1. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York city area. JAMA. 2020;323(20):2052–2059. doi:10.1001/jama.2020.6775
    1. Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ. 2020;369:m1849. doi:10.1136/bmj.m1849
    1. Cao B, Wang Y, Wen D, et al. A Trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(19):1787–1799. doi:10.1056/NEJMoa2001282
    1. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19 - final report. N Engl J Med. 2020;383(19):1813–1826. doi:10.1056/NEJMoa2007764
    1. Tomazini BM, Maia IS, Cavalcanti AB, et al. Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: the CoDEX Randomized Clinical Trial. JAMA. 2020;324(13):1307–1316. doi:10.1001/jama.2020.17021
    1. Wilcox SR. Management of respiratory failure due to covid-19. BMJ. 2020;369:m1786. doi:10.1136/bmj.m1786
    1. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA. 2020;323(13):1239–1242. doi:10.1001/jama.2020.2648
    1. Price S, Singh S, Ledot S, et al. Respiratory management in severe acute respiratory syndrome coronavirus 2 infection. Eur Heart J Acute Cardiovasc Care. 2020;9(3):229–238. doi:10.1177/2048872620924613
    1. Wujtewicz M, Dylczyk-Sommer A, Aszkiełowicz A, Zdanowski S, Piwowarczyk S, Owczuk R. COVID-19 - what should anaethesiologists and intensivists know about it? Anaesthesiol Intensive Ther. 2020;52(1):34–41. doi:10.5114/ait.2020.93756
    1. Lazzeri M, Lanza A, Bellini R, et al. Respiratory physiotherapy in patients with COVID-19 infection in acute setting: a position paper of the Italian Association of Respiratory Physiotherapists (ARIR). Monaldi Arch Chest Dis. 2020;90(1). doi:10.4081/monaldi.2020.1285.
    1. Dres M, Goligher EC, Heunks LMA, Brochard LJ. Critical illness-associated diaphragm weakness. Intensive Care Med. 2017;43(10):1441–1452. doi:10.1007/s00134-017-4928-4
    1. Dres M, Jung B, Molinari N, et al. Respective contribution of intensive care unit-acquired limb muscle and severe diaphragm weakness on weaning outcome and mortality: a post hoc analysis of two cohorts. Crit Care. 2019;23(1):370. doi:10.1186/s13054-019-2650-z
    1. Goligher EC, Dres M, Fan E, et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med. 2018;197(2):204–213. doi:10.1164/rccm.201703-0536OC
    1. Jonkman AH, Jansen D, Heunks LM. Novel insights in ICU-acquired respiratory muscle dysfunction: implications for clinical care. Crit Care. 2017;21(1):64. doi:10.1186/s13054-017-1642-0
    1. Bissett B, Leditschke IA, Paratz JD, Boots RJ. Respiratory dysfunction in ventilated patients: can inspiratory muscle training help? Anaesth Intensive Care. 2012;40(2):236–246. doi:10.1177/0310057X1204000205
    1. Daniel Martin A, Smith BK, Gabrielli A. Mechanical ventilation, diaphragm weakness and weaning: a rehabilitation perspective. Respir Physiol Neurobiol. 2013;189(2):377–832. doi:10.1016/j.resp.2013.05.012
    1. Leal-Junior ECP, Lopes-Martins RÁB, Bjordal JM. Clinical and scientific recommendations for the use of photobiomodulation therapy in exercise performance enhancement and post-exercise recovery: current evidence and future directions. Braz J Phys Ther. 2019;23(1):71–75. doi:10.1016/j.bjpt.2018.12.002
    1. Albuquerque-Pontes GM, Vieira RP, Tomazoni SS, et al. Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers Med Sci. 2015;30(1):59–66. doi:10.1007/s10103-014-1616-2
    1. Suardi N, Sodipo BK, Mustafa MZ, Ali Z. Effect of visible laser light on ATP level of anaemic red blood cell. J Photochem Photobiol B. 2016;162:703–706. doi:10.1016/j.jphotobiol.2016.07.041
    1. Keszler A, Lindemer B, Hogg N, Weihrauch D, Lohr NL. Wavelength-dependence of vasodilation and NO release from S-nitrosothiols and dinitrosyl iron complexes by far red/near infrared light. Arch Biochem Biophys. 2018;649:47–52. doi:10.1016/j.abb.2018.05.006
    1. Linares SN, Beltrame T, Ferraresi C, Galdino GAM, Catai AM. Photobiomodulation effect on local hemoglobin concentration assessed by near-infrared spectroscopy in humans. Lasers Med Sci. 2020;35(3):641–649. doi:10.1007/s10103-019-02861-x
    1. Chen YC, Su YH, Lin YT, Huang CC, Hwang IS. Acute physiological responses to combined blood flow restriction and low-level laser. Eur J Appl Physiol. 2020;120(6):1437–1447. doi:10.1007/s00421-020-04378-6
    1. De Marchi T, Leal Junior EC, Bortoli C, Tomazoni SS, Lopes-Martins RA, Salvador M. Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci. 2012;27(1):231–236. doi:10.1007/s10103-011-0955-5
    1. Sakurai Y, Yamaguchi M, Abiko Y. Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci. 2000;108(1):29–34. doi:10.1034/j.1600-0722.2000.00783.x
    1. Langella LG, Casalechi HL, Tomazoni SS, et al. Photobiomodulation therapy (PBMT) on acute pain and inflammation in patients who underwent total hip arthroplasty-a randomized, triple-blind, placebo-controlled clinical trial. Lasers Med Sci. 2018;33(9):1933–1940. doi:10.1007/s10103-018-2558-x
    1. Tomazoni SS, Costa LOP, Joensen J, et al. Photobiomodulation therapy is able to modulate PGE2 levels in patients with chronic non-specific low back pain: a randomized placebo-controlled trial. Lasers Surg Med. 2021;53(2):236–244. doi:10.1002/lsm.23255
    1. Grandinétti Vdos S, Miranda EF, Johnson DS, et al. The thermal impact of phototherapy with concurrent super-pulsed lasers and red and infrared LEDs on human skin. Lasers Med Sci. 2015;30(5):1575–1581. doi:10.1007/s10103-015-1755-0
    1. de Paiva PRV, Casalechi HL, Tomazoni SS, et al. Does the combination of photobiomodulation therapy (PBMT) and static magnetic fields (sMF) potentiate the effects of aerobic endurance training and decrease the loss of performance during detraining? A randomised, triple-blinded, placebo-controlled trial. BMC Sports Sci Med Rehabil. 2020;12(1):23. doi:10.1186/s13102-020-00171-2
    1. Okano H. Effects of static magnetic fields in biology: role of free radicals. Front Biosci. 2008;13:6106–6125. doi:10.2741/3141
    1. Friedmann H, Lipovsky A, Nitzan Y, Lubart R. Combined magnetic and pulsed laser fields produce synergistic acceleration of cellular electron transfer. Laser Ther. 2009;18:137–141. doi:10.5978/islsm.18.137
    1. Wang D, Wang Z, Zhang L, et al. Cellular ATP levels are affected by moderate and strong static magnetic fields. Bioelectromagnetics. 2018;39(5):352–360. doi:10.1002/bem.22122
    1. Coballase-Urrutia E, Navarro L, Ortiz JL, et al. Static magnetic fields modulate the response of different oxidative stress markers in a restraint stress model animal. Biomed Res Int. 2018;2018:3960408. doi:10.1155/2018/3960408
    1. Weintraub MI, Wolfe GI, Barohn RA, et al. Static magnetic field therapy for symptomatic diabetic neuropathy: a randomized, double-blind, placebo-controlled trial. Arch Phys Med Rehabil. 2003;84(5):736–746. doi:10.1016/S0003-9993(03)00106-0
    1. Li S, Yu B, Zhou D, He C, Zhuo Q, Hulme JM. Electromagnetic fields for treating osteoarthritis. Cochrane Database Syst Rev. 2013;12:CD003523.
    1. Fan Y, Ji X, Zhang L, Zhang X. The analgesic effects of static magnetic fields. Bioelectromagnetics. 2021;42(2):115–127. doi:10.1002/bem.22323
    1. Leal-Junior EC, Vanin AA, Miranda EF, de Carvalho Pde T, Dal Corso S, Bjordal JM. Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci. 2015;30(2):925–939. doi:10.1007/s10103-013-1465-4
    1. Vanin AA, Verhagen E, Barboza SD, Costa LOP, Leal-Junior ECP. Photobiomodulation therapy for the improvement of muscular performance and reduction of muscular fatigue associated with exercise in healthy people: a systematic review and meta-analysis. Lasers Med Sci. 2018;33(1):181–214. doi:10.1007/s10103-017-2368-6
    1. de Souza GHM, Ferraresi C, Moreno MA, et al. Acute effects of photobiomodulation therapy applied to respiratory muscles of chronic obstructive pulmonary disease patients: a double-blind, randomized, placebo-controlled crossover trial. Lasers Med Sci. 2020;35(5):1055–1063. doi:10.1007/s10103-019-02885-3
    1. de Lima FM, Vitoretti L, Coelho F, et al. Suppressive effect of low-level laser therapy on tracheal hyperresponsiveness and lung inflammation in rat subjected to intestinal ischemia and reperfusion. Lasers Med Sci. 2013;28(2):551–564. doi:10.1007/s10103-012-1088-1
    1. Aimbire F, Bjordal JM, Iversen VV, et al. Low level laser therapy partially restores trachea muscle relaxation response in rats with tumor necrosis factor alpha-mediated smooth airway muscle dysfunction. Lasers Surg Med. 2006;38(8):773–778. doi:10.1002/lsm.20357
    1. Silva VR, Marcondes P, Silva M, et al. Low-level laser therapy inhibits bronchoconstriction, Th2 inflammation and airway remodeling in allergic asthma. Respir Physiol Neurobiol. 2014;194:37–48. doi:10.1016/j.resp.2014.01.008
    1. Silva Junior JM, Malbouisson LM, Nuevo HL, et al. Applicability of the simplified acute physiology score (SAPS 3) in Brazilian hospitals. Rev Bras Anestesiol. 2010;60(1):20–31. doi:10.1590/S0034-70942010000100003
    1. Magalhães PAF, Camillo CA, Langer D, Andrade LB, Duarte MDCMB, Gosselink R. Weaning failure and respiratory muscle function: what has been done and what can be improved? Respir Med. 2018;134:54–61. doi:10.1016/j.rmed.2017.11.023
    1. Sklar MC, Dres M, Fan E, et al. Association of low baseline diaphragm muscle mass with prolonged mechanical ventilation and mortality among critically ill adults. JAMA Netw Open. 2020;3(2):e1921520. doi:10.1001/jamanetworkopen.2019.21520
    1. Hollis S, Campbell F. What is meant by intention to treat analysis? Survey of published randomised controlled trials. BMJ. 1999;319(7211):670–674. doi:10.1136/bmj.319.7211.670
    1. Elkins MR, Moseley AM. Intention-to-treat analysis. J Physiother. 2015;61(3):165–167. doi:10.1016/j.jphys.2015.05.013
    1. Fernandes AB, de Lima CJ, Villaverde AGJB, Pereira PC, Carvalho HC, Zângaro RA. Photobiomodulation: shining light on COVID-19. Photobiomodul Photomed Laser Surg. 2020;38(7):395–397. doi:10.1089/photob.2020.4882
    1. Sigman SA, Mokmeli S, Vetrici MA. Adjunct low level laser therapy (LLLT) in a morbidly obese patient with severe COVID-19 pneumonia: a case report. Can J Respir Ther. 2020;56:52–56. doi:10.29390/cjrt-2020-022
    1. Sigman SA, Mokmeli S, Monici M, Vetrici MA. A 57-year-old african american man with severe COVID-19 Pneumonia who responded to supportive photobiomodulation Therapy (PBMT): first Use of PBMT in COVID-19. Am J Case Rep. 2020;21:e926779. doi:10.12659/AJCR.926779
    1. Vetrici MA, Mokmeli S, Bohm AR, Monici M, Sigman SA. Evaluation of adjunctive photobiomodulation (PBMT) for COVID-19 pneumonia via clinical status and pulmonary severity indices in a preliminary trial. J Inflamm Res. 2021;14:965–979. doi:10.2147/JIR.S301625
    1. Vanin AA, Miranda EF, Machado CS, et al. What is the best moment to apply phototherapy when associated to a strength training program? A randomized, double-blinded, placebo-controlled trial: phototherapy in association to strength training. Lasers Med Sci. 2016;31(8):1555–1564. doi:10.1007/s10103-016-2015-7
    1. Baroni BM, Rodrigues R, Freire BB, Franke Rde A, Geremia JM, Vaz MA. Effect of low-level laser therapy on muscle adaptation to knee extensor eccentric training. Eur J Appl Physiol. 2015;115(3):639–647. doi:10.1007/s00421-014-3055-y
    1. Leal-Junior ECP, de Oliveira MFD, Joensen J, Stausholm MB, Bjordal JM, Tomazoni SS. What is the optimal time-response window for the use of photobiomodulation therapy combined with static magnetic field (PBMT-sMF) for the improvement of exercise performance and recovery, and for how long the effects last? A randomized, triple-blinded, placebo-controlled trial. BMC Sports Sci Med Rehabil. 2020;12(1):64.
    1. Leal Junior EC, Lopes-Martins RA, Rossi RP, et al. Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med. 2009;41(8):572–577. doi:10.1002/lsm.20810
    1. Leal Junior EC, Lopes-Martins RA, Frigo L, et al. Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther. 2010;40(8):524–532. doi:10.2519/jospt.2010.3294
    1. Li L, Zhang W, Hu Y, et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial. JAMA. 2020;324(5):460–470. doi:10.1001/jama.2020.10044
    1. Mauri T, Spinelli E, Scotti E, et al. Potential for lung recruitment and ventilation-perfusion mismatch in patients with the acute respiratory distress syndrome from coronavirus disease 2019. Crit Care Med. 2020;48(8):1129–1134. doi:10.1097/CCM.0000000000004386

Source: PubMed

3
Tilaa